diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/networking/nf_flowtable.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/networking/nf_flowtable.rst')
-rw-r--r-- | Documentation/networking/nf_flowtable.rst | 235 |
1 files changed, 235 insertions, 0 deletions
diff --git a/Documentation/networking/nf_flowtable.rst b/Documentation/networking/nf_flowtable.rst new file mode 100644 index 000000000..d757c21c1 --- /dev/null +++ b/Documentation/networking/nf_flowtable.rst @@ -0,0 +1,235 @@ +.. SPDX-License-Identifier: GPL-2.0 + +==================================== +Netfilter's flowtable infrastructure +==================================== + +This documentation describes the Netfilter flowtable infrastructure which allows +you to define a fastpath through the flowtable datapath. This infrastructure +also provides hardware offload support. The flowtable supports for the layer 3 +IPv4 and IPv6 and the layer 4 TCP and UDP protocols. + +Overview +-------- + +Once the first packet of the flow successfully goes through the IP forwarding +path, from the second packet on, you might decide to offload the flow to the +flowtable through your ruleset. The flowtable infrastructure provides a rule +action that allows you to specify when to add a flow to the flowtable. + +A packet that finds a matching entry in the flowtable (ie. flowtable hit) is +transmitted to the output netdevice via neigh_xmit(), hence, packets bypass the +classic IP forwarding path (the visible effect is that you do not see these +packets from any of the Netfilter hooks coming after ingress). In case that +there is no matching entry in the flowtable (ie. flowtable miss), the packet +follows the classic IP forwarding path. + +The flowtable uses a resizable hashtable. Lookups are based on the following +n-tuple selectors: layer 2 protocol encapsulation (VLAN and PPPoE), layer 3 +source and destination, layer 4 source and destination ports and the input +interface (useful in case there are several conntrack zones in place). + +The 'flow add' action allows you to populate the flowtable, the user selectively +specifies what flows are placed into the flowtable. Hence, packets follow the +classic IP forwarding path unless the user explicitly instruct flows to use this +new alternative forwarding path via policy. + +The flowtable datapath is represented in Fig.1, which describes the classic IP +forwarding path including the Netfilter hooks and the flowtable fastpath bypass. + +:: + + userspace process + ^ | + | | + _____|____ ____\/___ + / \ / \ + | input | | output | + \__________/ \_________/ + ^ | + | | + _________ __________ --------- _____\/_____ + / \ / \ |Routing | / \ + --> ingress ---> prerouting ---> |decision| | postrouting |--> neigh_xmit + \_________/ \__________/ ---------- \____________/ ^ + | ^ | ^ | + flowtable | ____\/___ | | + | | / \ | | + __\/___ | | forward |------------ | + |-----| | \_________/ | + |-----| | 'flow offload' rule | + |-----| | adds entry to | + |_____| | flowtable | + | | | + / \ | | + /hit\_no_| | + \ ? / | + \ / | + |__yes_________________fastpath bypass ____________________________| + + Fig.1 Netfilter hooks and flowtable interactions + +The flowtable entry also stores the NAT configuration, so all packets are +mangled according to the NAT policy that is specified from the classic IP +forwarding path. The TTL is decremented before calling neigh_xmit(). Fragmented +traffic is passed up to follow the classic IP forwarding path given that the +transport header is missing, in this case, flowtable lookups are not possible. +TCP RST and FIN packets are also passed up to the classic IP forwarding path to +release the flow gracefully. Packets that exceed the MTU are also passed up to +the classic forwarding path to report packet-too-big ICMP errors to the sender. + +Example configuration +--------------------- + +Enabling the flowtable bypass is relatively easy, you only need to create a +flowtable and add one rule to your forward chain:: + + table inet x { + flowtable f { + hook ingress priority 0; devices = { eth0, eth1 }; + } + chain y { + type filter hook forward priority 0; policy accept; + ip protocol tcp flow add @f + counter packets 0 bytes 0 + } + } + +This example adds the flowtable 'f' to the ingress hook of the eth0 and eth1 +netdevices. You can create as many flowtables as you want in case you need to +perform resource partitioning. The flowtable priority defines the order in which +hooks are run in the pipeline, this is convenient in case you already have a +nftables ingress chain (make sure the flowtable priority is smaller than the +nftables ingress chain hence the flowtable runs before in the pipeline). + +The 'flow offload' action from the forward chain 'y' adds an entry to the +flowtable for the TCP syn-ack packet coming in the reply direction. Once the +flow is offloaded, you will observe that the counter rule in the example above +does not get updated for the packets that are being forwarded through the +forwarding bypass. + +You can identify offloaded flows through the [OFFLOAD] tag when listing your +connection tracking table. + +:: + + # conntrack -L + tcp 6 src=10.141.10.2 dst=192.168.10.2 sport=52728 dport=5201 src=192.168.10.2 dst=192.168.10.1 sport=5201 dport=52728 [OFFLOAD] mark=0 use=2 + + +Layer 2 encapsulation +--------------------- + +Since Linux kernel 5.13, the flowtable infrastructure discovers the real +netdevice behind VLAN and PPPoE netdevices. The flowtable software datapath +parses the VLAN and PPPoE layer 2 headers to extract the ethertype and the +VLAN ID / PPPoE session ID which are used for the flowtable lookups. The +flowtable datapath also deals with layer 2 decapsulation. + +You do not need to add the PPPoE and the VLAN devices to your flowtable, +instead the real device is sufficient for the flowtable to track your flows. + +Bridge and IP forwarding +------------------------ + +Since Linux kernel 5.13, you can add bridge ports to the flowtable. The +flowtable infrastructure discovers the topology behind the bridge device. This +allows the flowtable to define a fastpath bypass between the bridge ports +(represented as eth1 and eth2 in the example figure below) and the gateway +device (represented as eth0) in your switch/router. + +:: + + fastpath bypass + .-------------------------. + / \ + | IP forwarding | + | / \ \/ + | br0 eth0 ..... eth0 + . / \ *host B* + -> eth1 eth2 + . *switch/router* + . + . + eth0 + *host A* + +The flowtable infrastructure also supports for bridge VLAN filtering actions +such as PVID and untagged. You can also stack a classic VLAN device on top of +your bridge port. + +If you would like that your flowtable defines a fastpath between your bridge +ports and your IP forwarding path, you have to add your bridge ports (as +represented by the real netdevice) to your flowtable definition. + +Counters +-------- + +The flowtable can synchronize packet and byte counters with the existing +connection tracking entry by specifying the counter statement in your flowtable +definition, e.g. + +:: + + table inet x { + flowtable f { + hook ingress priority 0; devices = { eth0, eth1 }; + counter + } + } + +Counter support is available since Linux kernel 5.7. + +Hardware offload +---------------- + +If your network device provides hardware offload support, you can turn it on by +means of the 'offload' flag in your flowtable definition, e.g. + +:: + + table inet x { + flowtable f { + hook ingress priority 0; devices = { eth0, eth1 }; + flags offload; + } + } + +There is a workqueue that adds the flows to the hardware. Note that a few +packets might still run over the flowtable software path until the workqueue has +a chance to offload the flow to the network device. + +You can identify hardware offloaded flows through the [HW_OFFLOAD] tag when +listing your connection tracking table. Please, note that the [OFFLOAD] tag +refers to the software offload mode, so there is a distinction between [OFFLOAD] +which refers to the software flowtable fastpath and [HW_OFFLOAD] which refers +to the hardware offload datapath being used by the flow. + +The flowtable hardware offload infrastructure also supports for the DSA +(Distributed Switch Architecture). + +Limitations +----------- + +The flowtable behaves like a cache. The flowtable entries might get stale if +either the destination MAC address or the egress netdevice that is used for +transmission changes. + +This might be a problem if: + +- You run the flowtable in software mode and you combine bridge and IP + forwarding in your setup. +- Hardware offload is enabled. + +More reading +------------ + +This documentation is based on the LWN.net articles [1]_\ [2]_. Rafal Milecki +also made a very complete and comprehensive summary called "A state of network +acceleration" that describes how things were before this infrastructure was +mainlined [3]_ and it also makes a rough summary of this work [4]_. + +.. [1] https://lwn.net/Articles/738214/ +.. [2] https://lwn.net/Articles/742164/ +.. [3] http://lists.infradead.org/pipermail/lede-dev/2018-January/010830.html +.. [4] http://lists.infradead.org/pipermail/lede-dev/2018-January/010829.html |