diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/powerpc/cxl.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/powerpc/cxl.rst')
-rw-r--r-- | Documentation/powerpc/cxl.rst | 469 |
1 files changed, 469 insertions, 0 deletions
diff --git a/Documentation/powerpc/cxl.rst b/Documentation/powerpc/cxl.rst new file mode 100644 index 000000000..d2d770576 --- /dev/null +++ b/Documentation/powerpc/cxl.rst @@ -0,0 +1,469 @@ +==================================== +Coherent Accelerator Interface (CXL) +==================================== + +Introduction +============ + + The coherent accelerator interface is designed to allow the + coherent connection of accelerators (FPGAs and other devices) to a + POWER system. These devices need to adhere to the Coherent + Accelerator Interface Architecture (CAIA). + + IBM refers to this as the Coherent Accelerator Processor Interface + or CAPI. In the kernel it's referred to by the name CXL to avoid + confusion with the ISDN CAPI subsystem. + + Coherent in this context means that the accelerator and CPUs can + both access system memory directly and with the same effective + addresses. + + +Hardware overview +================= + + :: + + POWER8/9 FPGA + +----------+ +---------+ + | | | | + | CPU | | AFU | + | | | | + | | | | + | | | | + +----------+ +---------+ + | PHB | | | + | +------+ | PSL | + | | CAPP |<------>| | + +---+------+ PCIE +---------+ + + The POWER8/9 chip has a Coherently Attached Processor Proxy (CAPP) + unit which is part of the PCIe Host Bridge (PHB). This is managed + by Linux by calls into OPAL. Linux doesn't directly program the + CAPP. + + The FPGA (or coherently attached device) consists of two parts. + The POWER Service Layer (PSL) and the Accelerator Function Unit + (AFU). The AFU is used to implement specific functionality behind + the PSL. The PSL, among other things, provides memory address + translation services to allow each AFU direct access to userspace + memory. + + The AFU is the core part of the accelerator (eg. the compression, + crypto etc function). The kernel has no knowledge of the function + of the AFU. Only userspace interacts directly with the AFU. + + The PSL provides the translation and interrupt services that the + AFU needs. This is what the kernel interacts with. For example, if + the AFU needs to read a particular effective address, it sends + that address to the PSL, the PSL then translates it, fetches the + data from memory and returns it to the AFU. If the PSL has a + translation miss, it interrupts the kernel and the kernel services + the fault. The context to which this fault is serviced is based on + who owns that acceleration function. + + - POWER8 and PSL Version 8 are compliant to the CAIA Version 1.0. + - POWER9 and PSL Version 9 are compliant to the CAIA Version 2.0. + + This PSL Version 9 provides new features such as: + + * Interaction with the nest MMU on the P9 chip. + * Native DMA support. + * Supports sending ASB_Notify messages for host thread wakeup. + * Supports Atomic operations. + * etc. + + Cards with a PSL9 won't work on a POWER8 system and cards with a + PSL8 won't work on a POWER9 system. + +AFU Modes +========= + + There are two programming modes supported by the AFU. Dedicated + and AFU directed. AFU may support one or both modes. + + When using dedicated mode only one MMU context is supported. In + this mode, only one userspace process can use the accelerator at + time. + + When using AFU directed mode, up to 16K simultaneous contexts can + be supported. This means up to 16K simultaneous userspace + applications may use the accelerator (although specific AFUs may + support fewer). In this mode, the AFU sends a 16 bit context ID + with each of its requests. This tells the PSL which context is + associated with each operation. If the PSL can't translate an + operation, the ID can also be accessed by the kernel so it can + determine the userspace context associated with an operation. + + +MMIO space +========== + + A portion of the accelerator MMIO space can be directly mapped + from the AFU to userspace. Either the whole space can be mapped or + just a per context portion. The hardware is self describing, hence + the kernel can determine the offset and size of the per context + portion. + + +Interrupts +========== + + AFUs may generate interrupts that are destined for userspace. These + are received by the kernel as hardware interrupts and passed onto + userspace by a read syscall documented below. + + Data storage faults and error interrupts are handled by the kernel + driver. + + +Work Element Descriptor (WED) +============================= + + The WED is a 64-bit parameter passed to the AFU when a context is + started. Its format is up to the AFU hence the kernel has no + knowledge of what it represents. Typically it will be the + effective address of a work queue or status block where the AFU + and userspace can share control and status information. + + + + +User API +======== + +1. AFU character devices +^^^^^^^^^^^^^^^^^^^^^^^^ + + For AFUs operating in AFU directed mode, two character device + files will be created. /dev/cxl/afu0.0m will correspond to a + master context and /dev/cxl/afu0.0s will correspond to a slave + context. Master contexts have access to the full MMIO space an + AFU provides. Slave contexts have access to only the per process + MMIO space an AFU provides. + + For AFUs operating in dedicated process mode, the driver will + only create a single character device per AFU called + /dev/cxl/afu0.0d. This will have access to the entire MMIO space + that the AFU provides (like master contexts in AFU directed). + + The types described below are defined in include/uapi/misc/cxl.h + + The following file operations are supported on both slave and + master devices. + + A userspace library libcxl is available here: + + https://github.com/ibm-capi/libcxl + + This provides a C interface to this kernel API. + +open +---- + + Opens the device and allocates a file descriptor to be used with + the rest of the API. + + A dedicated mode AFU only has one context and only allows the + device to be opened once. + + An AFU directed mode AFU can have many contexts, the device can be + opened once for each context that is available. + + When all available contexts are allocated the open call will fail + and return -ENOSPC. + + Note: + IRQs need to be allocated for each context, which may limit + the number of contexts that can be created, and therefore + how many times the device can be opened. The POWER8 CAPP + supports 2040 IRQs and 3 are used by the kernel, so 2037 are + left. If 1 IRQ is needed per context, then only 2037 + contexts can be allocated. If 4 IRQs are needed per context, + then only 2037/4 = 509 contexts can be allocated. + + +ioctl +----- + + CXL_IOCTL_START_WORK: + Starts the AFU context and associates it with the current + process. Once this ioctl is successfully executed, all memory + mapped into this process is accessible to this AFU context + using the same effective addresses. No additional calls are + required to map/unmap memory. The AFU memory context will be + updated as userspace allocates and frees memory. This ioctl + returns once the AFU context is started. + + Takes a pointer to a struct cxl_ioctl_start_work + + :: + + struct cxl_ioctl_start_work { + __u64 flags; + __u64 work_element_descriptor; + __u64 amr; + __s16 num_interrupts; + __s16 reserved1; + __s32 reserved2; + __u64 reserved3; + __u64 reserved4; + __u64 reserved5; + __u64 reserved6; + }; + + flags: + Indicates which optional fields in the structure are + valid. + + work_element_descriptor: + The Work Element Descriptor (WED) is a 64-bit argument + defined by the AFU. Typically this is an effective + address pointing to an AFU specific structure + describing what work to perform. + + amr: + Authority Mask Register (AMR), same as the powerpc + AMR. This field is only used by the kernel when the + corresponding CXL_START_WORK_AMR value is specified in + flags. If not specified the kernel will use a default + value of 0. + + num_interrupts: + Number of userspace interrupts to request. This field + is only used by the kernel when the corresponding + CXL_START_WORK_NUM_IRQS value is specified in flags. + If not specified the minimum number required by the + AFU will be allocated. The min and max number can be + obtained from sysfs. + + reserved fields: + For ABI padding and future extensions + + CXL_IOCTL_GET_PROCESS_ELEMENT: + Get the current context id, also known as the process element. + The value is returned from the kernel as a __u32. + + +mmap +---- + + An AFU may have an MMIO space to facilitate communication with the + AFU. If it does, the MMIO space can be accessed via mmap. The size + and contents of this area are specific to the particular AFU. The + size can be discovered via sysfs. + + In AFU directed mode, master contexts are allowed to map all of + the MMIO space and slave contexts are allowed to only map the per + process MMIO space associated with the context. In dedicated + process mode the entire MMIO space can always be mapped. + + This mmap call must be done after the START_WORK ioctl. + + Care should be taken when accessing MMIO space. Only 32 and 64-bit + accesses are supported by POWER8. Also, the AFU will be designed + with a specific endianness, so all MMIO accesses should consider + endianness (recommend endian(3) variants like: le64toh(), + be64toh() etc). These endian issues equally apply to shared memory + queues the WED may describe. + + +read +---- + + Reads events from the AFU. Blocks if no events are pending + (unless O_NONBLOCK is supplied). Returns -EIO in the case of an + unrecoverable error or if the card is removed. + + read() will always return an integral number of events. + + The buffer passed to read() must be at least 4K bytes. + + The result of the read will be a buffer of one or more events, + each event is of type struct cxl_event, of varying size:: + + struct cxl_event { + struct cxl_event_header header; + union { + struct cxl_event_afu_interrupt irq; + struct cxl_event_data_storage fault; + struct cxl_event_afu_error afu_error; + }; + }; + + The struct cxl_event_header is defined as + + :: + + struct cxl_event_header { + __u16 type; + __u16 size; + __u16 process_element; + __u16 reserved1; + }; + + type: + This defines the type of event. The type determines how + the rest of the event is structured. These types are + described below and defined by enum cxl_event_type. + + size: + This is the size of the event in bytes including the + struct cxl_event_header. The start of the next event can + be found at this offset from the start of the current + event. + + process_element: + Context ID of the event. + + reserved field: + For future extensions and padding. + + If the event type is CXL_EVENT_AFU_INTERRUPT then the event + structure is defined as + + :: + + struct cxl_event_afu_interrupt { + __u16 flags; + __u16 irq; /* Raised AFU interrupt number */ + __u32 reserved1; + }; + + flags: + These flags indicate which optional fields are present + in this struct. Currently all fields are mandatory. + + irq: + The IRQ number sent by the AFU. + + reserved field: + For future extensions and padding. + + If the event type is CXL_EVENT_DATA_STORAGE then the event + structure is defined as + + :: + + struct cxl_event_data_storage { + __u16 flags; + __u16 reserved1; + __u32 reserved2; + __u64 addr; + __u64 dsisr; + __u64 reserved3; + }; + + flags: + These flags indicate which optional fields are present in + this struct. Currently all fields are mandatory. + + address: + The address that the AFU unsuccessfully attempted to + access. Valid accesses will be handled transparently by the + kernel but invalid accesses will generate this event. + + dsisr: + This field gives information on the type of fault. It is a + copy of the DSISR from the PSL hardware when the address + fault occurred. The form of the DSISR is as defined in the + CAIA. + + reserved fields: + For future extensions + + If the event type is CXL_EVENT_AFU_ERROR then the event structure + is defined as + + :: + + struct cxl_event_afu_error { + __u16 flags; + __u16 reserved1; + __u32 reserved2; + __u64 error; + }; + + flags: + These flags indicate which optional fields are present in + this struct. Currently all fields are Mandatory. + + error: + Error status from the AFU. Defined by the AFU. + + reserved fields: + For future extensions and padding + + +2. Card character device (powerVM guest only) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + + In a powerVM guest, an extra character device is created for the + card. The device is only used to write (flash) a new image on the + FPGA accelerator. Once the image is written and verified, the + device tree is updated and the card is reset to reload the updated + image. + +open +---- + + Opens the device and allocates a file descriptor to be used with + the rest of the API. The device can only be opened once. + +ioctl +----- + +CXL_IOCTL_DOWNLOAD_IMAGE / CXL_IOCTL_VALIDATE_IMAGE: + Starts and controls flashing a new FPGA image. Partial + reconfiguration is not supported (yet), so the image must contain + a copy of the PSL and AFU(s). Since an image can be quite large, + the caller may have to iterate, splitting the image in smaller + chunks. + + Takes a pointer to a struct cxl_adapter_image:: + + struct cxl_adapter_image { + __u64 flags; + __u64 data; + __u64 len_data; + __u64 len_image; + __u64 reserved1; + __u64 reserved2; + __u64 reserved3; + __u64 reserved4; + }; + + flags: + These flags indicate which optional fields are present in + this struct. Currently all fields are mandatory. + + data: + Pointer to a buffer with part of the image to write to the + card. + + len_data: + Size of the buffer pointed to by data. + + len_image: + Full size of the image. + + +Sysfs Class +=========== + + A cxl sysfs class is added under /sys/class/cxl to facilitate + enumeration and tuning of the accelerators. Its layout is + described in Documentation/ABI/testing/sysfs-class-cxl + + +Udev rules +========== + + The following udev rules could be used to create a symlink to the + most logical chardev to use in any programming mode (afuX.Yd for + dedicated, afuX.Ys for afu directed), since the API is virtually + identical for each:: + + SUBSYSTEM=="cxl", ATTRS{mode}=="dedicated_process", SYMLINK="cxl/%b" + SUBSYSTEM=="cxl", ATTRS{mode}=="afu_directed", \ + KERNEL=="afu[0-9]*.[0-9]*s", SYMLINK="cxl/%b" |