diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/process/5.Posting.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/process/5.Posting.rst')
-rw-r--r-- | Documentation/process/5.Posting.rst | 347 |
1 files changed, 347 insertions, 0 deletions
diff --git a/Documentation/process/5.Posting.rst b/Documentation/process/5.Posting.rst new file mode 100644 index 000000000..d87f1fee4 --- /dev/null +++ b/Documentation/process/5.Posting.rst @@ -0,0 +1,347 @@ +.. _development_posting: + +Posting patches +=============== + +Sooner or later, the time comes when your work is ready to be presented to +the community for review and, eventually, inclusion into the mainline +kernel. Unsurprisingly, the kernel development community has evolved a set +of conventions and procedures which are used in the posting of patches; +following them will make life much easier for everybody involved. This +document will attempt to cover these expectations in reasonable detail; +more information can also be found in the files +:ref:`Documentation/process/submitting-patches.rst <submittingpatches>` +and :ref:`Documentation/process/submit-checklist.rst <submitchecklist>`. + + +When to post +------------ + +There is a constant temptation to avoid posting patches before they are +completely "ready." For simple patches, that is not a problem. If the +work being done is complex, though, there is a lot to be gained by getting +feedback from the community before the work is complete. So you should +consider posting in-progress work, or even making a git tree available so +that interested developers can catch up with your work at any time. + +When posting code which is not yet considered ready for inclusion, it is a +good idea to say so in the posting itself. Also mention any major work +which remains to be done and any known problems. Fewer people will look at +patches which are known to be half-baked, but those who do will come in +with the idea that they can help you drive the work in the right direction. + + +Before creating patches +----------------------- + +There are a number of things which should be done before you consider +sending patches to the development community. These include: + + - Test the code to the extent that you can. Make use of the kernel's + debugging tools, ensure that the kernel will build with all reasonable + combinations of configuration options, use cross-compilers to build for + different architectures, etc. + + - Make sure your code is compliant with the kernel coding style + guidelines. + + - Does your change have performance implications? If so, you should run + benchmarks showing what the impact (or benefit) of your change is; a + summary of the results should be included with the patch. + + - Be sure that you have the right to post the code. If this work was done + for an employer, the employer likely has a right to the work and must be + agreeable with its release under the GPL. + +As a general rule, putting in some extra thought before posting code almost +always pays back the effort in short order. + + +Patch preparation +----------------- + +The preparation of patches for posting can be a surprising amount of work, +but, once again, attempting to save time here is not generally advisable +even in the short term. + +Patches must be prepared against a specific version of the kernel. As a +general rule, a patch should be based on the current mainline as found in +Linus's git tree. When basing on mainline, start with a well-known release +point - a stable or -rc release - rather than branching off the mainline at +an arbitrary spot. + +It may become necessary to make versions against -mm, linux-next, or a +subsystem tree, though, to facilitate wider testing and review. Depending +on the area of your patch and what is going on elsewhere, basing a patch +against these other trees can require a significant amount of work +resolving conflicts and dealing with API changes. + +Only the most simple changes should be formatted as a single patch; +everything else should be made as a logical series of changes. Splitting +up patches is a bit of an art; some developers spend a long time figuring +out how to do it in the way that the community expects. There are a few +rules of thumb, however, which can help considerably: + + - The patch series you post will almost certainly not be the series of + changes found in your working revision control system. Instead, the + changes you have made need to be considered in their final form, then + split apart in ways which make sense. The developers are interested in + discrete, self-contained changes, not the path you took to get to those + changes. + + - Each logically independent change should be formatted as a separate + patch. These changes can be small ("add a field to this structure") or + large (adding a significant new driver, for example), but they should be + conceptually small and amenable to a one-line description. Each patch + should make a specific change which can be reviewed on its own and + verified to do what it says it does. + + - As a way of restating the guideline above: do not mix different types of + changes in the same patch. If a single patch fixes a critical security + bug, rearranges a few structures, and reformats the code, there is a + good chance that it will be passed over and the important fix will be + lost. + + - Each patch should yield a kernel which builds and runs properly; if your + patch series is interrupted in the middle, the result should still be a + working kernel. Partial application of a patch series is a common + scenario when the "git bisect" tool is used to find regressions; if the + result is a broken kernel, you will make life harder for developers and + users who are engaging in the noble work of tracking down problems. + + - Do not overdo it, though. One developer once posted a set of edits + to a single file as 500 separate patches - an act which did not make him + the most popular person on the kernel mailing list. A single patch can + be reasonably large as long as it still contains a single *logical* + change. + + - It can be tempting to add a whole new infrastructure with a series of + patches, but to leave that infrastructure unused until the final patch + in the series enables the whole thing. This temptation should be + avoided if possible; if that series adds regressions, bisection will + finger the last patch as the one which caused the problem, even though + the real bug is elsewhere. Whenever possible, a patch which adds new + code should make that code active immediately. + +Working to create the perfect patch series can be a frustrating process +which takes quite a bit of time and thought after the "real work" has been +done. When done properly, though, it is time well spent. + + +Patch formatting and changelogs +------------------------------- + +So now you have a perfect series of patches for posting, but the work is +not done quite yet. Each patch needs to be formatted into a message which +quickly and clearly communicates its purpose to the rest of the world. To +that end, each patch will be composed of the following: + + - An optional "From" line naming the author of the patch. This line is + only necessary if you are passing on somebody else's patch via email, + but it never hurts to add it when in doubt. + + - A one-line description of what the patch does. This message should be + enough for a reader who sees it with no other context to figure out the + scope of the patch; it is the line that will show up in the "short form" + changelogs. This message is usually formatted with the relevant + subsystem name first, followed by the purpose of the patch. For + example: + + :: + + gpio: fix build on CONFIG_GPIO_SYSFS=n + + - A blank line followed by a detailed description of the contents of the + patch. This description can be as long as is required; it should say + what the patch does and why it should be applied to the kernel. + + - One or more tag lines, with, at a minimum, one Signed-off-by: line from + the author of the patch. Tags will be described in more detail below. + +The items above, together, form the changelog for the patch. Writing good +changelogs is a crucial but often-neglected art; it's worth spending +another moment discussing this issue. When writing a changelog, you should +bear in mind that a number of different people will be reading your words. +These include subsystem maintainers and reviewers who need to decide +whether the patch should be included, distributors and other maintainers +trying to decide whether a patch should be backported to other kernels, bug +hunters wondering whether the patch is responsible for a problem they are +chasing, users who want to know how the kernel has changed, and more. A +good changelog conveys the needed information to all of these people in the +most direct and concise way possible. + +To that end, the summary line should describe the effects of and motivation +for the change as well as possible given the one-line constraint. The +detailed description can then amplify on those topics and provide any +needed additional information. If the patch fixes a bug, cite the commit +which introduced the bug if possible (and please provide both the commit ID +and the title when citing commits). If a problem is associated with +specific log or compiler output, include that output to help others +searching for a solution to the same problem. If the change is meant to +support other changes coming in later patch, say so. If internal APIs are +changed, detail those changes and how other developers should respond. In +general, the more you can put yourself into the shoes of everybody who will +be reading your changelog, the better that changelog (and the kernel as a +whole) will be. + +Needless to say, the changelog should be the text used when committing the +change to a revision control system. It will be followed by: + + - The patch itself, in the unified ("-u") patch format. Using the "-p" + option to diff will associate function names with changes, making the + resulting patch easier for others to read. + +You should avoid including changes to irrelevant files (those generated by +the build process, for example, or editor backup files) in the patch. The +file "dontdiff" in the Documentation directory can help in this regard; +pass it to diff with the "-X" option. + +The tags already briefly mentioned above are used to provide insights how +the patch came into being. They are described in detail in the +:ref:`Documentation/process/submitting-patches.rst <submittingpatches>` +document; what follows here is a brief summary. + +One tag is used to refer to earlier commits which introduced problems fixed by +the patch:: + + Fixes: 1f2e3d4c5b6a ("The first line of the commit specified by the first 12 characters of its SHA-1 ID") + +Another tag is used for linking web pages with additional backgrounds or +details, for example a report about a bug fixed by the patch or a document +with a specification implemented by the patch:: + + Link: https://example.com/somewhere.html optional-other-stuff + +Many maintainers when applying a patch also add this tag to link to the +latest public review posting of the patch; often this is automatically done +by tools like b4 or a git hook like the one described in +'Documentation/maintainer/configure-git.rst'. + +A third kind of tag is used to document who was involved in the development of +the patch. Each of these uses this format:: + + tag: Full Name <email address> optional-other-stuff + +The tags in common use are: + + - Signed-off-by: this is a developer's certification that he or she has + the right to submit the patch for inclusion into the kernel. It is an + agreement to the Developer's Certificate of Origin, the full text of + which can be found in :ref:`Documentation/process/submitting-patches.rst <submittingpatches>` + Code without a proper signoff cannot be merged into the mainline. + + - Co-developed-by: states that the patch was co-created by several developers; + it is a used to give attribution to co-authors (in addition to the author + attributed by the From: tag) when multiple people work on a single patch. + Every Co-developed-by: must be immediately followed by a Signed-off-by: of + the associated co-author. Details and examples can be found in + :ref:`Documentation/process/submitting-patches.rst <submittingpatches>`. + + - Acked-by: indicates an agreement by another developer (often a + maintainer of the relevant code) that the patch is appropriate for + inclusion into the kernel. + + - Tested-by: states that the named person has tested the patch and found + it to work. + + - Reviewed-by: the named developer has reviewed the patch for correctness; + see the reviewer's statement in :ref:`Documentation/process/submitting-patches.rst <submittingpatches>` + for more detail. + + - Reported-by: names a user who reported a problem which is fixed by this + patch; this tag is used to give credit to the (often underappreciated) + people who test our code and let us know when things do not work + correctly. + + - Cc: the named person received a copy of the patch and had the + opportunity to comment on it. + +Be careful in the addition of tags to your patches, as only Cc: is appropriate +for addition without the explicit permission of the person named; using +Reported-by: is fine most of the time as well, but ask for permission if +the bug was reported in private. + + +Sending the patch +----------------- + +Before you mail your patches, there are a couple of other things you should +take care of: + + - Are you sure that your mailer will not corrupt the patches? Patches + which have had gratuitous white-space changes or line wrapping performed + by the mail client will not apply at the other end, and often will not + be examined in any detail. If there is any doubt at all, mail the patch + to yourself and convince yourself that it shows up intact. + + :ref:`Documentation/process/email-clients.rst <email_clients>` has some + helpful hints on making specific mail clients work for sending patches. + + - Are you sure your patch is free of silly mistakes? You should always + run patches through scripts/checkpatch.pl and address the complaints it + comes up with. Please bear in mind that checkpatch.pl, while being the + embodiment of a fair amount of thought about what kernel patches should + look like, is not smarter than you. If fixing a checkpatch.pl complaint + would make the code worse, don't do it. + +Patches should always be sent as plain text. Please do not send them as +attachments; that makes it much harder for reviewers to quote sections of +the patch in their replies. Instead, just put the patch directly into your +message. + +When mailing patches, it is important to send copies to anybody who might +be interested in it. Unlike some other projects, the kernel encourages +people to err on the side of sending too many copies; don't assume that the +relevant people will see your posting on the mailing lists. In particular, +copies should go to: + + - The maintainer(s) of the affected subsystem(s). As described earlier, + the MAINTAINERS file is the first place to look for these people. + + - Other developers who have been working in the same area - especially + those who might be working there now. Using git to see who else has + modified the files you are working on can be helpful. + + - If you are responding to a bug report or a feature request, copy the + original poster as well. + + - Send a copy to the relevant mailing list, or, if nothing else applies, + the linux-kernel list. + + - If you are fixing a bug, think about whether the fix should go into the + next stable update. If so, stable@vger.kernel.org should get a copy of + the patch. Also add a "Cc: stable@vger.kernel.org" to the tags within + the patch itself; that will cause the stable team to get a notification + when your fix goes into the mainline. + +When selecting recipients for a patch, it is good to have an idea of who +you think will eventually accept the patch and get it merged. While it +is possible to send patches directly to Linus Torvalds and have him merge +them, things are not normally done that way. Linus is busy, and there are +subsystem maintainers who watch over specific parts of the kernel. Usually +you will be wanting that maintainer to merge your patches. If there is no +obvious maintainer, Andrew Morton is often the patch target of last resort. + +Patches need good subject lines. The canonical format for a patch line is +something like: + +:: + + [PATCH nn/mm] subsys: one-line description of the patch + +where "nn" is the ordinal number of the patch, "mm" is the total number of +patches in the series, and "subsys" is the name of the affected subsystem. +Clearly, nn/mm can be omitted for a single, standalone patch. + +If you have a significant series of patches, it is customary to send an +introductory description as part zero. This convention is not universally +followed though; if you use it, remember that information in the +introduction does not make it into the kernel changelogs. So please ensure +that the patches, themselves, have complete changelog information. + +In general, the second and following parts of a multi-part patch should be +sent as a reply to the first part so that they all thread together at the +receiving end. Tools like git and quilt have commands to mail out a set of +patches with the proper threading. If you have a long series, though, and +are using git, please stay away from the --chain-reply-to option to avoid +creating exceptionally deep nesting. |