diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/process/botching-up-ioctls.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/process/botching-up-ioctls.rst')
-rw-r--r-- | Documentation/process/botching-up-ioctls.rst | 225 |
1 files changed, 225 insertions, 0 deletions
diff --git a/Documentation/process/botching-up-ioctls.rst b/Documentation/process/botching-up-ioctls.rst new file mode 100644 index 000000000..ba4667ab3 --- /dev/null +++ b/Documentation/process/botching-up-ioctls.rst @@ -0,0 +1,225 @@ +================================= +(How to avoid) Botching up ioctls +================================= + +From: https://blog.ffwll.ch/2013/11/botching-up-ioctls.html + +By: Daniel Vetter, Copyright © 2013 Intel Corporation + +One clear insight kernel graphics hackers gained in the past few years is that +trying to come up with a unified interface to manage the execution units and +memory on completely different GPUs is a futile effort. So nowadays every +driver has its own set of ioctls to allocate memory and submit work to the GPU. +Which is nice, since there's no more insanity in the form of fake-generic, but +actually only used once interfaces. But the clear downside is that there's much +more potential to screw things up. + +To avoid repeating all the same mistakes again I've written up some of the +lessons learned while botching the job for the drm/i915 driver. Most of these +only cover technicalities and not the big-picture issues like what the command +submission ioctl exactly should look like. Learning these lessons is probably +something every GPU driver has to do on its own. + + +Prerequisites +------------- + +First the prerequisites. Without these you have already failed, because you +will need to add a 32-bit compat layer: + + * Only use fixed sized integers. To avoid conflicts with typedefs in userspace + the kernel has special types like __u32, __s64. Use them. + + * Align everything to the natural size and use explicit padding. 32-bit + platforms don't necessarily align 64-bit values to 64-bit boundaries, but + 64-bit platforms do. So we always need padding to the natural size to get + this right. + + * Pad the entire struct to a multiple of 64-bits if the structure contains + 64-bit types - the structure size will otherwise differ on 32-bit versus + 64-bit. Having a different structure size hurts when passing arrays of + structures to the kernel, or if the kernel checks the structure size, which + e.g. the drm core does. + + * Pointers are __u64, cast from/to a uintprt_t on the userspace side and + from/to a void __user * in the kernel. Try really hard not to delay this + conversion or worse, fiddle the raw __u64 through your code since that + diminishes the checking tools like sparse can provide. The macro + u64_to_user_ptr can be used in the kernel to avoid warnings about integers + and pointers of different sizes. + + +Basics +------ + +With the joys of writing a compat layer avoided we can take a look at the basic +fumbles. Neglecting these will make backward and forward compatibility a real +pain. And since getting things wrong on the first attempt is guaranteed you +will have a second iteration or at least an extension for any given interface. + + * Have a clear way for userspace to figure out whether your new ioctl or ioctl + extension is supported on a given kernel. If you can't rely on old kernels + rejecting the new flags/modes or ioctls (since doing that was botched in the + past) then you need a driver feature flag or revision number somewhere. + + * Have a plan for extending ioctls with new flags or new fields at the end of + the structure. The drm core checks the passed-in size for each ioctl call + and zero-extends any mismatches between kernel and userspace. That helps, + but isn't a complete solution since newer userspace on older kernels won't + notice that the newly added fields at the end get ignored. So this still + needs a new driver feature flags. + + * Check all unused fields and flags and all the padding for whether it's 0, + and reject the ioctl if that's not the case. Otherwise your nice plan for + future extensions is going right down the gutters since someone will submit + an ioctl struct with random stack garbage in the yet unused parts. Which + then bakes in the ABI that those fields can never be used for anything else + but garbage. This is also the reason why you must explicitly pad all + structures, even if you never use them in an array - the padding the compiler + might insert could contain garbage. + + * Have simple testcases for all of the above. + + +Fun with Error Paths +-------------------- + +Nowadays we don't have any excuse left any more for drm drivers being neat +little root exploits. This means we both need full input validation and solid +error handling paths - GPUs will die eventually in the oddmost corner cases +anyway: + + * The ioctl must check for array overflows. Also it needs to check for + over/underflows and clamping issues of integer values in general. The usual + example is sprite positioning values fed directly into the hardware with the + hardware just having 12 bits or so. Works nicely until some odd display + server doesn't bother with clamping itself and the cursor wraps around the + screen. + + * Have simple testcases for every input validation failure case in your ioctl. + Check that the error code matches your expectations. And finally make sure + that you only test for one single error path in each subtest by submitting + otherwise perfectly valid data. Without this an earlier check might reject + the ioctl already and shadow the codepath you actually want to test, hiding + bugs and regressions. + + * Make all your ioctls restartable. First X really loves signals and second + this will allow you to test 90% of all error handling paths by just + interrupting your main test suite constantly with signals. Thanks to X's + love for signal you'll get an excellent base coverage of all your error + paths pretty much for free for graphics drivers. Also, be consistent with + how you handle ioctl restarting - e.g. drm has a tiny drmIoctl helper in its + userspace library. The i915 driver botched this with the set_tiling ioctl, + now we're stuck forever with some arcane semantics in both the kernel and + userspace. + + * If you can't make a given codepath restartable make a stuck task at least + killable. GPUs just die and your users won't like you more if you hang their + entire box (by means of an unkillable X process). If the state recovery is + still too tricky have a timeout or hangcheck safety net as a last-ditch + effort in case the hardware has gone bananas. + + * Have testcases for the really tricky corner cases in your error recovery code + - it's way too easy to create a deadlock between your hangcheck code and + waiters. + + +Time, Waiting and Missing it +---------------------------- + +GPUs do most everything asynchronously, so we have a need to time operations and +wait for outstanding ones. This is really tricky business; at the moment none of +the ioctls supported by the drm/i915 get this fully right, which means there's +still tons more lessons to learn here. + + * Use CLOCK_MONOTONIC as your reference time, always. It's what alsa, drm and + v4l use by default nowadays. But let userspace know which timestamps are + derived from different clock domains like your main system clock (provided + by the kernel) or some independent hardware counter somewhere else. Clocks + will mismatch if you look close enough, but if performance measuring tools + have this information they can at least compensate. If your userspace can + get at the raw values of some clocks (e.g. through in-command-stream + performance counter sampling instructions) consider exposing those also. + + * Use __s64 seconds plus __u64 nanoseconds to specify time. It's not the most + convenient time specification, but it's mostly the standard. + + * Check that input time values are normalized and reject them if not. Note + that the kernel native struct ktime has a signed integer for both seconds + and nanoseconds, so beware here. + + * For timeouts, use absolute times. If you're a good fellow and made your + ioctl restartable relative timeouts tend to be too coarse and can + indefinitely extend your wait time due to rounding on each restart. + Especially if your reference clock is something really slow like the display + frame counter. With a spec lawyer hat on this isn't a bug since timeouts can + always be extended - but users will surely hate you if their neat animations + starts to stutter due to this. + + * Consider ditching any synchronous wait ioctls with timeouts and just deliver + an asynchronous event on a pollable file descriptor. It fits much better + into event driven applications' main loop. + + * Have testcases for corner-cases, especially whether the return values for + already-completed events, successful waits and timed-out waits are all sane + and suiting to your needs. + + +Leaking Resources, Not +---------------------- + +A full-blown drm driver essentially implements a little OS, but specialized to +the given GPU platforms. This means a driver needs to expose tons of handles +for different objects and other resources to userspace. Doing that right +entails its own little set of pitfalls: + + * Always attach the lifetime of your dynamically created resources to the + lifetime of a file descriptor. Consider using a 1:1 mapping if your resource + needs to be shared across processes - fd-passing over unix domain sockets + also simplifies lifetime management for userspace. + + * Always have O_CLOEXEC support. + + * Ensure that you have sufficient insulation between different clients. By + default pick a private per-fd namespace which forces any sharing to be done + explicitly. Only go with a more global per-device namespace if the objects + are truly device-unique. One counterexample in the drm modeset interfaces is + that the per-device modeset objects like connectors share a namespace with + framebuffer objects, which mostly are not shared at all. A separate + namespace, private by default, for framebuffers would have been more + suitable. + + * Think about uniqueness requirements for userspace handles. E.g. for most drm + drivers it's a userspace bug to submit the same object twice in the same + command submission ioctl. But then if objects are shareable userspace needs + to know whether it has seen an imported object from a different process + already or not. I haven't tried this myself yet due to lack of a new class + of objects, but consider using inode numbers on your shared file descriptors + as unique identifiers - it's how real files are told apart, too. + Unfortunately this requires a full-blown virtual filesystem in the kernel. + + +Last, but not Least +------------------- + +Not every problem needs a new ioctl: + + * Think hard whether you really want a driver-private interface. Of course + it's much quicker to push a driver-private interface than engaging in + lengthy discussions for a more generic solution. And occasionally doing a + private interface to spearhead a new concept is what's required. But in the + end, once the generic interface comes around you'll end up maintainer two + interfaces. Indefinitely. + + * Consider other interfaces than ioctls. A sysfs attribute is much better for + per-device settings, or for child objects with fairly static lifetimes (like + output connectors in drm with all the detection override attributes). Or + maybe only your testsuite needs this interface, and then debugfs with its + disclaimer of not having a stable ABI would be better. + +Finally, the name of the game is to get it right on the first attempt, since if +your driver proves popular and your hardware platforms long-lived then you'll +be stuck with a given ioctl essentially forever. You can try to deprecate +horrible ioctls on newer iterations of your hardware, but generally it takes +years to accomplish this. And then again years until the last user able to +complain about regressions disappears, too. |