aboutsummaryrefslogtreecommitdiff
path: root/Documentation/process/botching-up-ioctls.rst
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/process/botching-up-ioctls.rst
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'Documentation/process/botching-up-ioctls.rst')
-rw-r--r--Documentation/process/botching-up-ioctls.rst225
1 files changed, 225 insertions, 0 deletions
diff --git a/Documentation/process/botching-up-ioctls.rst b/Documentation/process/botching-up-ioctls.rst
new file mode 100644
index 000000000..ba4667ab3
--- /dev/null
+++ b/Documentation/process/botching-up-ioctls.rst
@@ -0,0 +1,225 @@
+=================================
+(How to avoid) Botching up ioctls
+=================================
+
+From: https://blog.ffwll.ch/2013/11/botching-up-ioctls.html
+
+By: Daniel Vetter, Copyright © 2013 Intel Corporation
+
+One clear insight kernel graphics hackers gained in the past few years is that
+trying to come up with a unified interface to manage the execution units and
+memory on completely different GPUs is a futile effort. So nowadays every
+driver has its own set of ioctls to allocate memory and submit work to the GPU.
+Which is nice, since there's no more insanity in the form of fake-generic, but
+actually only used once interfaces. But the clear downside is that there's much
+more potential to screw things up.
+
+To avoid repeating all the same mistakes again I've written up some of the
+lessons learned while botching the job for the drm/i915 driver. Most of these
+only cover technicalities and not the big-picture issues like what the command
+submission ioctl exactly should look like. Learning these lessons is probably
+something every GPU driver has to do on its own.
+
+
+Prerequisites
+-------------
+
+First the prerequisites. Without these you have already failed, because you
+will need to add a 32-bit compat layer:
+
+ * Only use fixed sized integers. To avoid conflicts with typedefs in userspace
+ the kernel has special types like __u32, __s64. Use them.
+
+ * Align everything to the natural size and use explicit padding. 32-bit
+ platforms don't necessarily align 64-bit values to 64-bit boundaries, but
+ 64-bit platforms do. So we always need padding to the natural size to get
+ this right.
+
+ * Pad the entire struct to a multiple of 64-bits if the structure contains
+ 64-bit types - the structure size will otherwise differ on 32-bit versus
+ 64-bit. Having a different structure size hurts when passing arrays of
+ structures to the kernel, or if the kernel checks the structure size, which
+ e.g. the drm core does.
+
+ * Pointers are __u64, cast from/to a uintprt_t on the userspace side and
+ from/to a void __user * in the kernel. Try really hard not to delay this
+ conversion or worse, fiddle the raw __u64 through your code since that
+ diminishes the checking tools like sparse can provide. The macro
+ u64_to_user_ptr can be used in the kernel to avoid warnings about integers
+ and pointers of different sizes.
+
+
+Basics
+------
+
+With the joys of writing a compat layer avoided we can take a look at the basic
+fumbles. Neglecting these will make backward and forward compatibility a real
+pain. And since getting things wrong on the first attempt is guaranteed you
+will have a second iteration or at least an extension for any given interface.
+
+ * Have a clear way for userspace to figure out whether your new ioctl or ioctl
+ extension is supported on a given kernel. If you can't rely on old kernels
+ rejecting the new flags/modes or ioctls (since doing that was botched in the
+ past) then you need a driver feature flag or revision number somewhere.
+
+ * Have a plan for extending ioctls with new flags or new fields at the end of
+ the structure. The drm core checks the passed-in size for each ioctl call
+ and zero-extends any mismatches between kernel and userspace. That helps,
+ but isn't a complete solution since newer userspace on older kernels won't
+ notice that the newly added fields at the end get ignored. So this still
+ needs a new driver feature flags.
+
+ * Check all unused fields and flags and all the padding for whether it's 0,
+ and reject the ioctl if that's not the case. Otherwise your nice plan for
+ future extensions is going right down the gutters since someone will submit
+ an ioctl struct with random stack garbage in the yet unused parts. Which
+ then bakes in the ABI that those fields can never be used for anything else
+ but garbage. This is also the reason why you must explicitly pad all
+ structures, even if you never use them in an array - the padding the compiler
+ might insert could contain garbage.
+
+ * Have simple testcases for all of the above.
+
+
+Fun with Error Paths
+--------------------
+
+Nowadays we don't have any excuse left any more for drm drivers being neat
+little root exploits. This means we both need full input validation and solid
+error handling paths - GPUs will die eventually in the oddmost corner cases
+anyway:
+
+ * The ioctl must check for array overflows. Also it needs to check for
+ over/underflows and clamping issues of integer values in general. The usual
+ example is sprite positioning values fed directly into the hardware with the
+ hardware just having 12 bits or so. Works nicely until some odd display
+ server doesn't bother with clamping itself and the cursor wraps around the
+ screen.
+
+ * Have simple testcases for every input validation failure case in your ioctl.
+ Check that the error code matches your expectations. And finally make sure
+ that you only test for one single error path in each subtest by submitting
+ otherwise perfectly valid data. Without this an earlier check might reject
+ the ioctl already and shadow the codepath you actually want to test, hiding
+ bugs and regressions.
+
+ * Make all your ioctls restartable. First X really loves signals and second
+ this will allow you to test 90% of all error handling paths by just
+ interrupting your main test suite constantly with signals. Thanks to X's
+ love for signal you'll get an excellent base coverage of all your error
+ paths pretty much for free for graphics drivers. Also, be consistent with
+ how you handle ioctl restarting - e.g. drm has a tiny drmIoctl helper in its
+ userspace library. The i915 driver botched this with the set_tiling ioctl,
+ now we're stuck forever with some arcane semantics in both the kernel and
+ userspace.
+
+ * If you can't make a given codepath restartable make a stuck task at least
+ killable. GPUs just die and your users won't like you more if you hang their
+ entire box (by means of an unkillable X process). If the state recovery is
+ still too tricky have a timeout or hangcheck safety net as a last-ditch
+ effort in case the hardware has gone bananas.
+
+ * Have testcases for the really tricky corner cases in your error recovery code
+ - it's way too easy to create a deadlock between your hangcheck code and
+ waiters.
+
+
+Time, Waiting and Missing it
+----------------------------
+
+GPUs do most everything asynchronously, so we have a need to time operations and
+wait for outstanding ones. This is really tricky business; at the moment none of
+the ioctls supported by the drm/i915 get this fully right, which means there's
+still tons more lessons to learn here.
+
+ * Use CLOCK_MONOTONIC as your reference time, always. It's what alsa, drm and
+ v4l use by default nowadays. But let userspace know which timestamps are
+ derived from different clock domains like your main system clock (provided
+ by the kernel) or some independent hardware counter somewhere else. Clocks
+ will mismatch if you look close enough, but if performance measuring tools
+ have this information they can at least compensate. If your userspace can
+ get at the raw values of some clocks (e.g. through in-command-stream
+ performance counter sampling instructions) consider exposing those also.
+
+ * Use __s64 seconds plus __u64 nanoseconds to specify time. It's not the most
+ convenient time specification, but it's mostly the standard.
+
+ * Check that input time values are normalized and reject them if not. Note
+ that the kernel native struct ktime has a signed integer for both seconds
+ and nanoseconds, so beware here.
+
+ * For timeouts, use absolute times. If you're a good fellow and made your
+ ioctl restartable relative timeouts tend to be too coarse and can
+ indefinitely extend your wait time due to rounding on each restart.
+ Especially if your reference clock is something really slow like the display
+ frame counter. With a spec lawyer hat on this isn't a bug since timeouts can
+ always be extended - but users will surely hate you if their neat animations
+ starts to stutter due to this.
+
+ * Consider ditching any synchronous wait ioctls with timeouts and just deliver
+ an asynchronous event on a pollable file descriptor. It fits much better
+ into event driven applications' main loop.
+
+ * Have testcases for corner-cases, especially whether the return values for
+ already-completed events, successful waits and timed-out waits are all sane
+ and suiting to your needs.
+
+
+Leaking Resources, Not
+----------------------
+
+A full-blown drm driver essentially implements a little OS, but specialized to
+the given GPU platforms. This means a driver needs to expose tons of handles
+for different objects and other resources to userspace. Doing that right
+entails its own little set of pitfalls:
+
+ * Always attach the lifetime of your dynamically created resources to the
+ lifetime of a file descriptor. Consider using a 1:1 mapping if your resource
+ needs to be shared across processes - fd-passing over unix domain sockets
+ also simplifies lifetime management for userspace.
+
+ * Always have O_CLOEXEC support.
+
+ * Ensure that you have sufficient insulation between different clients. By
+ default pick a private per-fd namespace which forces any sharing to be done
+ explicitly. Only go with a more global per-device namespace if the objects
+ are truly device-unique. One counterexample in the drm modeset interfaces is
+ that the per-device modeset objects like connectors share a namespace with
+ framebuffer objects, which mostly are not shared at all. A separate
+ namespace, private by default, for framebuffers would have been more
+ suitable.
+
+ * Think about uniqueness requirements for userspace handles. E.g. for most drm
+ drivers it's a userspace bug to submit the same object twice in the same
+ command submission ioctl. But then if objects are shareable userspace needs
+ to know whether it has seen an imported object from a different process
+ already or not. I haven't tried this myself yet due to lack of a new class
+ of objects, but consider using inode numbers on your shared file descriptors
+ as unique identifiers - it's how real files are told apart, too.
+ Unfortunately this requires a full-blown virtual filesystem in the kernel.
+
+
+Last, but not Least
+-------------------
+
+Not every problem needs a new ioctl:
+
+ * Think hard whether you really want a driver-private interface. Of course
+ it's much quicker to push a driver-private interface than engaging in
+ lengthy discussions for a more generic solution. And occasionally doing a
+ private interface to spearhead a new concept is what's required. But in the
+ end, once the generic interface comes around you'll end up maintainer two
+ interfaces. Indefinitely.
+
+ * Consider other interfaces than ioctls. A sysfs attribute is much better for
+ per-device settings, or for child objects with fairly static lifetimes (like
+ output connectors in drm with all the detection override attributes). Or
+ maybe only your testsuite needs this interface, and then debugfs with its
+ disclaimer of not having a stable ABI would be better.
+
+Finally, the name of the game is to get it right on the first attempt, since if
+your driver proves popular and your hardware platforms long-lived then you'll
+be stuck with a given ioctl essentially forever. You can try to deprecate
+horrible ioctls on newer iterations of your hardware, but generally it takes
+years to accomplish this. And then again years until the last user able to
+complain about regressions disappears, too.