diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/target/tcmu-design.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/target/tcmu-design.rst')
-rw-r--r-- | Documentation/target/tcmu-design.rst | 405 |
1 files changed, 405 insertions, 0 deletions
diff --git a/Documentation/target/tcmu-design.rst b/Documentation/target/tcmu-design.rst new file mode 100644 index 000000000..e47047e32 --- /dev/null +++ b/Documentation/target/tcmu-design.rst @@ -0,0 +1,405 @@ +==================== +TCM Userspace Design +==================== + + +.. Contents: + + 1) Design + a) Background + b) Benefits + c) Design constraints + d) Implementation overview + i. Mailbox + ii. Command ring + iii. Data Area + e) Device discovery + f) Device events + g) Other contingencies + 2) Writing a user pass-through handler + a) Discovering and configuring TCMU uio devices + b) Waiting for events on the device(s) + c) Managing the command ring + 3) A final note + + +Design +====== + +TCM is another name for LIO, an in-kernel iSCSI target (server). +Existing TCM targets run in the kernel. TCMU (TCM in Userspace) +allows userspace programs to be written which act as iSCSI targets. +This document describes the design. + +The existing kernel provides modules for different SCSI transport +protocols. TCM also modularizes the data storage. There are existing +modules for file, block device, RAM or using another SCSI device as +storage. These are called "backstores" or "storage engines". These +built-in modules are implemented entirely as kernel code. + +Background +---------- + +In addition to modularizing the transport protocol used for carrying +SCSI commands ("fabrics"), the Linux kernel target, LIO, also modularizes +the actual data storage as well. These are referred to as "backstores" +or "storage engines". The target comes with backstores that allow a +file, a block device, RAM, or another SCSI device to be used for the +local storage needed for the exported SCSI LUN. Like the rest of LIO, +these are implemented entirely as kernel code. + +These backstores cover the most common use cases, but not all. One new +use case that other non-kernel target solutions, such as tgt, are able +to support is using Gluster's GLFS or Ceph's RBD as a backstore. The +target then serves as a translator, allowing initiators to store data +in these non-traditional networked storage systems, while still only +using standard protocols themselves. + +If the target is a userspace process, supporting these is easy. tgt, +for example, needs only a small adapter module for each, because the +modules just use the available userspace libraries for RBD and GLFS. + +Adding support for these backstores in LIO is considerably more +difficult, because LIO is entirely kernel code. Instead of undertaking +the significant work to port the GLFS or RBD APIs and protocols to the +kernel, another approach is to create a userspace pass-through +backstore for LIO, "TCMU". + + +Benefits +-------- + +In addition to allowing relatively easy support for RBD and GLFS, TCMU +will also allow easier development of new backstores. TCMU combines +with the LIO loopback fabric to become something similar to FUSE +(Filesystem in Userspace), but at the SCSI layer instead of the +filesystem layer. A SUSE, if you will. + +The disadvantage is there are more distinct components to configure, and +potentially to malfunction. This is unavoidable, but hopefully not +fatal if we're careful to keep things as simple as possible. + +Design constraints +------------------ + +- Good performance: high throughput, low latency +- Cleanly handle if userspace: + + 1) never attaches + 2) hangs + 3) dies + 4) misbehaves + +- Allow future flexibility in user & kernel implementations +- Be reasonably memory-efficient +- Simple to configure & run +- Simple to write a userspace backend + + +Implementation overview +----------------------- + +The core of the TCMU interface is a memory region that is shared +between kernel and userspace. Within this region is: a control area +(mailbox); a lockless producer/consumer circular buffer for commands +to be passed up, and status returned; and an in/out data buffer area. + +TCMU uses the pre-existing UIO subsystem. UIO allows device driver +development in userspace, and this is conceptually very close to the +TCMU use case, except instead of a physical device, TCMU implements a +memory-mapped layout designed for SCSI commands. Using UIO also +benefits TCMU by handling device introspection (e.g. a way for +userspace to determine how large the shared region is) and signaling +mechanisms in both directions. + +There are no embedded pointers in the memory region. Everything is +expressed as an offset from the region's starting address. This allows +the ring to still work if the user process dies and is restarted with +the region mapped at a different virtual address. + +See target_core_user.h for the struct definitions. + +The Mailbox +----------- + +The mailbox is always at the start of the shared memory region, and +contains a version, details about the starting offset and size of the +command ring, and head and tail pointers to be used by the kernel and +userspace (respectively) to put commands on the ring, and indicate +when the commands are completed. + +version - 1 (userspace should abort if otherwise) + +flags: + - TCMU_MAILBOX_FLAG_CAP_OOOC: + indicates out-of-order completion is supported. + See "The Command Ring" for details. + +cmdr_off + The offset of the start of the command ring from the start + of the memory region, to account for the mailbox size. +cmdr_size + The size of the command ring. This does *not* need to be a + power of two. +cmd_head + Modified by the kernel to indicate when a command has been + placed on the ring. +cmd_tail + Modified by userspace to indicate when it has completed + processing of a command. + +The Command Ring +---------------- + +Commands are placed on the ring by the kernel incrementing +mailbox.cmd_head by the size of the command, modulo cmdr_size, and +then signaling userspace via uio_event_notify(). Once the command is +completed, userspace updates mailbox.cmd_tail in the same way and +signals the kernel via a 4-byte write(). When cmd_head equals +cmd_tail, the ring is empty -- no commands are currently waiting to be +processed by userspace. + +TCMU commands are 8-byte aligned. They start with a common header +containing "len_op", a 32-bit value that stores the length, as well as +the opcode in the lowest unused bits. It also contains cmd_id and +flags fields for setting by the kernel (kflags) and userspace +(uflags). + +Currently only two opcodes are defined, TCMU_OP_CMD and TCMU_OP_PAD. + +When the opcode is CMD, the entry in the command ring is a struct +tcmu_cmd_entry. Userspace finds the SCSI CDB (Command Data Block) via +tcmu_cmd_entry.req.cdb_off. This is an offset from the start of the +overall shared memory region, not the entry. The data in/out buffers +are accessible via tht req.iov[] array. iov_cnt contains the number of +entries in iov[] needed to describe either the Data-In or Data-Out +buffers. For bidirectional commands, iov_cnt specifies how many iovec +entries cover the Data-Out area, and iov_bidi_cnt specifies how many +iovec entries immediately after that in iov[] cover the Data-In +area. Just like other fields, iov.iov_base is an offset from the start +of the region. + +When completing a command, userspace sets rsp.scsi_status, and +rsp.sense_buffer if necessary. Userspace then increments +mailbox.cmd_tail by entry.hdr.length (mod cmdr_size) and signals the +kernel via the UIO method, a 4-byte write to the file descriptor. + +If TCMU_MAILBOX_FLAG_CAP_OOOC is set for mailbox->flags, kernel is +capable of handling out-of-order completions. In this case, userspace can +handle command in different order other than original. Since kernel would +still process the commands in the same order it appeared in the command +ring, userspace need to update the cmd->id when completing the +command(a.k.a steal the original command's entry). + +When the opcode is PAD, userspace only updates cmd_tail as above -- +it's a no-op. (The kernel inserts PAD entries to ensure each CMD entry +is contiguous within the command ring.) + +More opcodes may be added in the future. If userspace encounters an +opcode it does not handle, it must set UNKNOWN_OP bit (bit 0) in +hdr.uflags, update cmd_tail, and proceed with processing additional +commands, if any. + +The Data Area +------------- + +This is shared-memory space after the command ring. The organization +of this area is not defined in the TCMU interface, and userspace +should access only the parts referenced by pending iovs. + + +Device Discovery +---------------- + +Other devices may be using UIO besides TCMU. Unrelated user processes +may also be handling different sets of TCMU devices. TCMU userspace +processes must find their devices by scanning sysfs +class/uio/uio*/name. For TCMU devices, these names will be of the +format:: + + tcm-user/<hba_num>/<device_name>/<subtype>/<path> + +where "tcm-user" is common for all TCMU-backed UIO devices. <hba_num> +and <device_name> allow userspace to find the device's path in the +kernel target's configfs tree. Assuming the usual mount point, it is +found at:: + + /sys/kernel/config/target/core/user_<hba_num>/<device_name> + +This location contains attributes such as "hw_block_size", that +userspace needs to know for correct operation. + +<subtype> will be a userspace-process-unique string to identify the +TCMU device as expecting to be backed by a certain handler, and <path> +will be an additional handler-specific string for the user process to +configure the device, if needed. The name cannot contain ':', due to +LIO limitations. + +For all devices so discovered, the user handler opens /dev/uioX and +calls mmap():: + + mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0) + +where size must be equal to the value read from +/sys/class/uio/uioX/maps/map0/size. + + +Device Events +------------- + +If a new device is added or removed, a notification will be broadcast +over netlink, using a generic netlink family name of "TCM-USER" and a +multicast group named "config". This will include the UIO name as +described in the previous section, as well as the UIO minor +number. This should allow userspace to identify both the UIO device and +the LIO device, so that after determining the device is supported +(based on subtype) it can take the appropriate action. + + +Other contingencies +------------------- + +Userspace handler process never attaches: + +- TCMU will post commands, and then abort them after a timeout period + (30 seconds.) + +Userspace handler process is killed: + +- It is still possible to restart and re-connect to TCMU + devices. Command ring is preserved. However, after the timeout period, + the kernel will abort pending tasks. + +Userspace handler process hangs: + +- The kernel will abort pending tasks after a timeout period. + +Userspace handler process is malicious: + +- The process can trivially break the handling of devices it controls, + but should not be able to access kernel memory outside its shared + memory areas. + + +Writing a user pass-through handler (with example code) +======================================================= + +A user process handing a TCMU device must support the following: + +a) Discovering and configuring TCMU uio devices +b) Waiting for events on the device(s) +c) Managing the command ring: Parsing operations and commands, + performing work as needed, setting response fields (scsi_status and + possibly sense_buffer), updating cmd_tail, and notifying the kernel + that work has been finished + +First, consider instead writing a plugin for tcmu-runner. tcmu-runner +implements all of this, and provides a higher-level API for plugin +authors. + +TCMU is designed so that multiple unrelated processes can manage TCMU +devices separately. All handlers should make sure to only open their +devices, based opon a known subtype string. + +a) Discovering and configuring TCMU UIO devices:: + + /* error checking omitted for brevity */ + + int fd, dev_fd; + char buf[256]; + unsigned long long map_len; + void *map; + + fd = open("/sys/class/uio/uio0/name", O_RDONLY); + ret = read(fd, buf, sizeof(buf)); + close(fd); + buf[ret-1] = '\0'; /* null-terminate and chop off the \n */ + + /* we only want uio devices whose name is a format we expect */ + if (strncmp(buf, "tcm-user", 8)) + exit(-1); + + /* Further checking for subtype also needed here */ + + fd = open(/sys/class/uio/%s/maps/map0/size, O_RDONLY); + ret = read(fd, buf, sizeof(buf)); + close(fd); + str_buf[ret-1] = '\0'; /* null-terminate and chop off the \n */ + + map_len = strtoull(buf, NULL, 0); + + dev_fd = open("/dev/uio0", O_RDWR); + map = mmap(NULL, map_len, PROT_READ|PROT_WRITE, MAP_SHARED, dev_fd, 0); + + + b) Waiting for events on the device(s) + + while (1) { + char buf[4]; + + int ret = read(dev_fd, buf, 4); /* will block */ + + handle_device_events(dev_fd, map); + } + + +c) Managing the command ring:: + + #include <linux/target_core_user.h> + + int handle_device_events(int fd, void *map) + { + struct tcmu_mailbox *mb = map; + struct tcmu_cmd_entry *ent = (void *) mb + mb->cmdr_off + mb->cmd_tail; + int did_some_work = 0; + + /* Process events from cmd ring until we catch up with cmd_head */ + while (ent != (void *)mb + mb->cmdr_off + mb->cmd_head) { + + if (tcmu_hdr_get_op(ent->hdr.len_op) == TCMU_OP_CMD) { + uint8_t *cdb = (void *)mb + ent->req.cdb_off; + bool success = true; + + /* Handle command here. */ + printf("SCSI opcode: 0x%x\n", cdb[0]); + + /* Set response fields */ + if (success) + ent->rsp.scsi_status = SCSI_NO_SENSE; + else { + /* Also fill in rsp->sense_buffer here */ + ent->rsp.scsi_status = SCSI_CHECK_CONDITION; + } + } + else if (tcmu_hdr_get_op(ent->hdr.len_op) != TCMU_OP_PAD) { + /* Tell the kernel we didn't handle unknown opcodes */ + ent->hdr.uflags |= TCMU_UFLAG_UNKNOWN_OP; + } + else { + /* Do nothing for PAD entries except update cmd_tail */ + } + + /* update cmd_tail */ + mb->cmd_tail = (mb->cmd_tail + tcmu_hdr_get_len(&ent->hdr)) % mb->cmdr_size; + ent = (void *) mb + mb->cmdr_off + mb->cmd_tail; + did_some_work = 1; + } + + /* Notify the kernel that work has been finished */ + if (did_some_work) { + uint32_t buf = 0; + + write(fd, &buf, 4); + } + + return 0; + } + + +A final note +============ + +Please be careful to return codes as defined by the SCSI +specifications. These are different than some values defined in the +scsi/scsi.h include file. For example, CHECK CONDITION's status code +is 2, not 1. |