diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/trace/timerlat-tracer.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/trace/timerlat-tracer.rst')
-rw-r--r-- | Documentation/trace/timerlat-tracer.rst | 182 |
1 files changed, 182 insertions, 0 deletions
diff --git a/Documentation/trace/timerlat-tracer.rst b/Documentation/trace/timerlat-tracer.rst new file mode 100644 index 000000000..db17df312 --- /dev/null +++ b/Documentation/trace/timerlat-tracer.rst @@ -0,0 +1,182 @@ +############### +Timerlat tracer +############### + +The timerlat tracer aims to help the preemptive kernel developers to +find sources of wakeup latencies of real-time threads. Like cyclictest, +the tracer sets a periodic timer that wakes up a thread. The thread then +computes a *wakeup latency* value as the difference between the *current +time* and the *absolute time* that the timer was set to expire. The main +goal of timerlat is tracing in such a way to help kernel developers. + +Usage +----- + +Write the ASCII text "timerlat" into the current_tracer file of the +tracing system (generally mounted at /sys/kernel/tracing). + +For example:: + + [root@f32 ~]# cd /sys/kernel/tracing/ + [root@f32 tracing]# echo timerlat > current_tracer + +It is possible to follow the trace by reading the trace file:: + + [root@f32 tracing]# cat trace + # tracer: timerlat + # + # _-----=> irqs-off + # / _----=> need-resched + # | / _---=> hardirq/softirq + # || / _--=> preempt-depth + # || / + # |||| ACTIVATION + # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY + # | | | |||| | | | | + <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns + <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns + <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns + <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns + <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns + <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns + <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns + <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns + + +The tracer creates a per-cpu kernel thread with real-time priority that +prints two lines at every activation. The first is the *timer latency* +observed at the *hardirq* context before the activation of the thread. +The second is the *timer latency* observed by the thread. The ACTIVATION +ID field serves to relate the *irq* execution to its respective *thread* +execution. + +The *irq*/*thread* splitting is important to clarify in which context +the unexpected high value is coming from. The *irq* context can be +delayed by hardware-related actions, such as SMIs, NMIs, IRQs, +or by thread masking interrupts. Once the timer happens, the delay +can also be influenced by blocking caused by threads. For example, by +postponing the scheduler execution via preempt_disable(), scheduler +execution, or masking interrupts. Threads can also be delayed by the +interference from other threads and IRQs. + +Tracer options +--------------------- + +The timerlat tracer is built on top of osnoise tracer. +So its configuration is also done in the osnoise/ config +directory. The timerlat configs are: + + - cpus: CPUs at which a timerlat thread will execute. + - timerlat_period_us: the period of the timerlat thread. + - stop_tracing_us: stop the system tracing if a + timer latency at the *irq* context higher than the configured + value happens. Writing 0 disables this option. + - stop_tracing_total_us: stop the system tracing if a + timer latency at the *thread* context is higher than the configured + value happens. Writing 0 disables this option. + - print_stack: save the stack of the IRQ occurrence. The stack is printed + after the *thread context* event, or at the IRQ handler if *stop_tracing_us* + is hit. + +timerlat and osnoise +---------------------------- + +The timerlat can also take advantage of the osnoise: traceevents. +For example:: + + [root@f32 ~]# cd /sys/kernel/tracing/ + [root@f32 tracing]# echo timerlat > current_tracer + [root@f32 tracing]# echo 1 > events/osnoise/enable + [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us + [root@f32 tracing]# tail -10 trace + cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 13585 ns + cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 7597 ns + cc1-87882 [005] dNLh2.. 548.771099: irq_noise: qxl:21 start 548.771085017 duration 7139 ns + cc1-87882 [005] d...3.. 548.771102: thread_noise: cc1:87882 start 548.771078243 duration 9909 ns + timerlat/5-1035 [005] ....... 548.771104: #402268 context thread timer_latency 39960 ns + +In this case, the root cause of the timer latency does not point to a +single cause but to multiple ones. Firstly, the timer IRQ was delayed +for 13 us, which may point to a long IRQ disabled section (see IRQ +stacktrace section). Then the timer interrupt that wakes up the timerlat +thread took 7597 ns, and the qxl:21 device IRQ took 7139 ns. Finally, +the cc1 thread noise took 9909 ns of time before the context switch. +Such pieces of evidence are useful for the developer to use other +tracing methods to figure out how to debug and optimize the system. + +It is worth mentioning that the *duration* values reported +by the osnoise: events are *net* values. For example, the +thread_noise does not include the duration of the overhead caused +by the IRQ execution (which indeed accounted for 12736 ns). But +the values reported by the timerlat tracer (timerlat_latency) +are *gross* values. + +The art below illustrates a CPU timeline and how the timerlat tracer +observes it at the top and the osnoise: events at the bottom. Each "-" +in the timelines means circa 1 us, and the time moves ==>:: + + External timer irq thread + clock latency latency + event 13585 ns 39960 ns + | ^ ^ + v | | + |-------------| | + |-------------+-------------------------| + ^ ^ + ======================================================================== + [tmr irq] [dev irq] + [another thread...^ v..^ v.......][timerlat/ thread] <-- CPU timeline + ========================================================================= + |-------| |-------| + |--^ v-------| + | | | + | | + thread_noise: 9909 ns + | +-> irq_noise: 6139 ns + +-> irq_noise: 7597 ns + +IRQ stacktrace +--------------------------- + +The osnoise/print_stack option is helpful for the cases in which a thread +noise causes the major factor for the timer latency, because of preempt or +irq disabled. For example:: + + [root@f32 tracing]# echo 500 > osnoise/stop_tracing_total_us + [root@f32 tracing]# echo 500 > osnoise/print_stack + [root@f32 tracing]# echo timerlat > current_tracer + [root@f32 tracing]# tail -21 per_cpu/cpu7/trace + insmod-1026 [007] dN.h1.. 200.201948: irq_noise: local_timer:236 start 200.201939376 duration 7872 ns + insmod-1026 [007] d..h1.. 200.202587: #29800 context irq timer_latency 1616 ns + insmod-1026 [007] dN.h2.. 200.202598: irq_noise: local_timer:236 start 200.202586162 duration 11855 ns + insmod-1026 [007] dN.h3.. 200.202947: irq_noise: local_timer:236 start 200.202939174 duration 7318 ns + insmod-1026 [007] d...3.. 200.203444: thread_noise: insmod:1026 start 200.202586933 duration 838681 ns + timerlat/7-1001 [007] ....... 200.203445: #29800 context thread timer_latency 859978 ns + timerlat/7-1001 [007] ....1.. 200.203446: <stack trace> + => timerlat_irq + => __hrtimer_run_queues + => hrtimer_interrupt + => __sysvec_apic_timer_interrupt + => asm_call_irq_on_stack + => sysvec_apic_timer_interrupt + => asm_sysvec_apic_timer_interrupt + => delay_tsc + => dummy_load_1ms_pd_init + => do_one_initcall + => do_init_module + => __do_sys_finit_module + => do_syscall_64 + => entry_SYSCALL_64_after_hwframe + +In this case, it is possible to see that the thread added the highest +contribution to the *timer latency* and the stack trace, saved during +the timerlat IRQ handler, points to a function named +dummy_load_1ms_pd_init, which had the following code (on purpose):: + + static int __init dummy_load_1ms_pd_init(void) + { + preempt_disable(); + mdelay(1); + preempt_enable(); + return 0; + + } |