diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/userspace-api/media/cec/cec-pin-error-inj.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to '')
-rw-r--r-- | Documentation/userspace-api/media/cec/cec-pin-error-inj.rst | 329 |
1 files changed, 329 insertions, 0 deletions
diff --git a/Documentation/userspace-api/media/cec/cec-pin-error-inj.rst b/Documentation/userspace-api/media/cec/cec-pin-error-inj.rst new file mode 100644 index 000000000..411d42a74 --- /dev/null +++ b/Documentation/userspace-api/media/cec/cec-pin-error-inj.rst @@ -0,0 +1,329 @@ +.. SPDX-License-Identifier: GFDL-1.1-no-invariants-or-later + +.. _cec_pin_error_inj: + +CEC Pin Framework Error Injection +================================= + +The CEC Pin Framework is a core CEC framework for CEC hardware that only +has low-level support for the CEC bus. Most hardware today will have +high-level CEC support where the hardware deals with driving the CEC bus, +but some older devices aren't that fancy. However, this framework also +allows you to connect the CEC pin to a GPIO on e.g. a Raspberry Pi and +you have now made a CEC adapter. + +What makes doing this so interesting is that since we have full control +over the bus it is easy to support error injection. This is ideal to +test how well CEC adapters can handle error conditions. + +Currently only the cec-gpio driver (when the CEC line is directly +connected to a pull-up GPIO line) and the AllWinner A10/A20 drm driver +support this framework. + +If ``CONFIG_CEC_PIN_ERROR_INJ`` is enabled, then error injection is available +through debugfs. Specifically, in ``/sys/kernel/debug/cec/cecX/`` there is +now an ``error-inj`` file. + +.. note:: + + The error injection commands are not a stable ABI and may change in the + future. + +With ``cat error-inj`` you can see both the possible commands and the current +error injection status:: + + $ cat /sys/kernel/debug/cec/cec0/error-inj + # Clear error injections: + # clear clear all rx and tx error injections + # rx-clear clear all rx error injections + # tx-clear clear all tx error injections + # <op> clear clear all rx and tx error injections for <op> + # <op> rx-clear clear all rx error injections for <op> + # <op> tx-clear clear all tx error injections for <op> + # + # RX error injection: + # <op>[,<mode>] rx-nack NACK the message instead of sending an ACK + # <op>[,<mode>] rx-low-drive <bit> force a low-drive condition at this bit position + # <op>[,<mode>] rx-add-byte add a spurious byte to the received CEC message + # <op>[,<mode>] rx-remove-byte remove the last byte from the received CEC message + # any[,<mode>] rx-arb-lost [<poll>] generate a POLL message to trigger an arbitration lost + # + # TX error injection settings: + # tx-ignore-nack-until-eom ignore early NACKs until EOM + # tx-custom-low-usecs <usecs> define the 'low' time for the custom pulse + # tx-custom-high-usecs <usecs> define the 'high' time for the custom pulse + # tx-custom-pulse transmit the custom pulse once the bus is idle + # + # TX error injection: + # <op>[,<mode>] tx-no-eom don't set the EOM bit + # <op>[,<mode>] tx-early-eom set the EOM bit one byte too soon + # <op>[,<mode>] tx-add-bytes <num> append <num> (1-255) spurious bytes to the message + # <op>[,<mode>] tx-remove-byte drop the last byte from the message + # <op>[,<mode>] tx-short-bit <bit> make this bit shorter than allowed + # <op>[,<mode>] tx-long-bit <bit> make this bit longer than allowed + # <op>[,<mode>] tx-custom-bit <bit> send the custom pulse instead of this bit + # <op>[,<mode>] tx-short-start send a start pulse that's too short + # <op>[,<mode>] tx-long-start send a start pulse that's too long + # <op>[,<mode>] tx-custom-start send the custom pulse instead of the start pulse + # <op>[,<mode>] tx-last-bit <bit> stop sending after this bit + # <op>[,<mode>] tx-low-drive <bit> force a low-drive condition at this bit position + # + # <op> CEC message opcode (0-255) or 'any' + # <mode> 'once' (default), 'always', 'toggle' or 'off' + # <bit> CEC message bit (0-159) + # 10 bits per 'byte': bits 0-7: data, bit 8: EOM, bit 9: ACK + # <poll> CEC poll message used to test arbitration lost (0x00-0xff, default 0x0f) + # <usecs> microseconds (0-10000000, default 1000) + + clear + +You can write error injection commands to ``error-inj`` using +``echo 'cmd' >error-inj`` or ``cat cmd.txt >error-inj``. The ``cat error-inj`` +output contains the current error commands. You can save the output to a file +and use it as an input to ``error-inj`` later. + +Basic Syntax +------------ + +Leading spaces/tabs are ignored. If the next character is a ``#`` or the end +of the line was reached, then the whole line is ignored. Otherwise a command +is expected. + +The error injection commands fall in two main groups: those relating to +receiving CEC messages and those relating to transmitting CEC messages. In +addition, there are commands to clear existing error injection commands and +to create custom pulses on the CEC bus. + +Most error injection commands can be executed for specific CEC opcodes or for +all opcodes (``any``). Each command also has a 'mode' which can be ``off`` +(can be used to turn off an existing error injection command), ``once`` +(the default) which will trigger the error injection only once for the next +received or transmitted message, ``always`` to always trigger the error +injection and ``toggle`` to toggle the error injection on or off for every +transmit or receive. + +So '``any rx-nack``' will NACK the next received CEC message, +'``any,always rx-nack``' will NACK all received CEC messages and +'``0x82,toggle rx-nack``' will only NACK if an Active Source message was +received and do that only for every other received message. + +After an error was injected with mode ``once`` the error injection command +is cleared automatically, so ``once`` is a one-time deal. + +All combinations of ``<op>`` and error injection commands can co-exist. So +this is fine:: + + 0x9e tx-add-bytes 1 + 0x9e tx-early-eom + 0x9f tx-add-bytes 2 + any rx-nack + +All four error injection commands will be active simultaneously. + +However, if the same ``<op>`` and command combination is specified, +but with different arguments:: + + 0x9e tx-add-bytes 1 + 0x9e tx-add-bytes 2 + +Then the second will overwrite the first. + +Clear Error Injections +---------------------- + +``clear`` + Clear all error injections. + +``rx-clear`` + Clear all receive error injections + +``tx-clear`` + Clear all transmit error injections + +``<op> clear`` + Clear all error injections for the given opcode. + +``<op> rx-clear`` + Clear all receive error injections for the given opcode. + +``<op> tx-clear`` + Clear all transmit error injections for the given opcode. + +Receive Messages +---------------- + +``<op>[,<mode>] rx-nack`` + NACK broadcast messages and messages directed to this CEC adapter. + Every byte of the message will be NACKed in case the transmitter + keeps transmitting after the first byte was NACKed. + +``<op>[,<mode>] rx-low-drive <bit>`` + Force a Low Drive condition at this bit position. If <op> specifies + a specific CEC opcode then the bit position must be at least 18, + otherwise the opcode hasn't been received yet. This tests if the + transmitter can handle the Low Drive condition correctly and reports + the error correctly. Note that a Low Drive in the first 4 bits can also + be interpreted as an Arbitration Lost condition by the transmitter. + This is implementation dependent. + +``<op>[,<mode>] rx-add-byte`` + Add a spurious 0x55 byte to the received CEC message, provided + the message was 15 bytes long or less. This is useful to test + the high-level protocol since spurious bytes should be ignored. + +``<op>[,<mode>] rx-remove-byte`` + Remove the last byte from the received CEC message, provided it + was at least 2 bytes long. This is useful to test the high-level + protocol since messages that are too short should be ignored. + +``<op>[,<mode>] rx-arb-lost <poll>`` + Generate a POLL message to trigger an Arbitration Lost condition. + This command is only allowed for ``<op>`` values of ``next`` or ``all``. + As soon as a start bit has been received the CEC adapter will switch + to transmit mode and it will transmit a POLL message. By default this is + 0x0f, but it can also be specified explicitly via the ``<poll>`` argument. + + This command can be used to test the Arbitration Lost condition in + the remote CEC transmitter. Arbitration happens when two CEC adapters + start sending a message at the same time. In that case the initiator + with the most leading zeroes wins and the other transmitter has to + stop transmitting ('Arbitration Lost'). This is very hard to test, + except by using this error injection command. + + This does not work if the remote CEC transmitter has logical address + 0 ('TV') since that will always win. + +Transmit Messages +----------------- + +``tx-ignore-nack-until-eom`` + This setting changes the behavior of transmitting CEC messages. Normally + as soon as the receiver NACKs a byte the transmit will stop, but the + specification also allows that the full message is transmitted and only + at the end will the transmitter look at the ACK bit. This is not + recommended behavior since there is no point in keeping the CEC bus busy + for longer than is strictly needed. Especially given how slow the bus is. + + This setting can be used to test how well a receiver deals with + transmitters that ignore NACKs until the very end of the message. + +``<op>[,<mode>] tx-no-eom`` + Don't set the EOM bit. Normally the last byte of the message has the EOM + (End-Of-Message) bit set. With this command the transmit will just stop + without ever sending an EOM. This can be used to test how a receiver + handles this case. Normally receivers have a time-out after which + they will go back to the Idle state. + +``<op>[,<mode>] tx-early-eom`` + Set the EOM bit one byte too soon. This obviously only works for messages + of two bytes or more. The EOM bit will be set for the second-to-last byte + and not for the final byte. The receiver should ignore the last byte in + this case. Since the resulting message is likely to be too short for this + same reason the whole message is typically ignored. The receiver should be + in Idle state after the last byte was transmitted. + +``<op>[,<mode>] tx-add-bytes <num>`` + Append ``<num>`` (1-255) spurious bytes to the message. The extra bytes + have the value of the byte position in the message. So if you transmit a + two byte message (e.g. a Get CEC Version message) and add 2 bytes, then + the full message received by the remote CEC adapter is + ``0x40 0x9f 0x02 0x03``. + + This command can be used to test buffer overflows in the receiver. E.g. + what does it do when it receives more than the maximum message size of 16 + bytes. + +``<op>[,<mode>] tx-remove-byte`` + Drop the last byte from the message, provided the message is at least + two bytes long. The receiver should ignore messages that are too short. + +``<op>[,<mode>] tx-short-bit <bit>`` + Make this bit period shorter than allowed. The bit position cannot be + an Ack bit. If <op> specifies a specific CEC opcode then the bit position + must be at least 18, otherwise the opcode hasn't been received yet. + Normally the period of a data bit is between 2.05 and 2.75 milliseconds. + With this command the period of this bit is 1.8 milliseconds, this is + done by reducing the time the CEC bus is high. This bit period is less + than is allowed and the receiver should respond with a Low Drive + condition. + + This command is ignored for 0 bits in bit positions 0 to 3. This is + because the receiver also looks for an Arbitration Lost condition in + those first four bits and it is undefined what will happen if it + sees a too-short 0 bit. + +``<op>[,<mode>] tx-long-bit <bit>`` + Make this bit period longer than is valid. The bit position cannot be + an Ack bit. If <op> specifies a specific CEC opcode then the bit position + must be at least 18, otherwise the opcode hasn't been received yet. + Normally the period of a data bit is between 2.05 and 2.75 milliseconds. + With this command the period of this bit is 2.9 milliseconds, this is + done by increasing the time the CEC bus is high. + + Even though this bit period is longer than is valid it is undefined what + a receiver will do. It might just accept it, or it might time out and + return to Idle state. Unfortunately the CEC specification is silent about + this. + + This command is ignored for 0 bits in bit positions 0 to 3. This is + because the receiver also looks for an Arbitration Lost condition in + those first four bits and it is undefined what will happen if it + sees a too-long 0 bit. + +``<op>[,<mode>] tx-short-start`` + Make this start bit period shorter than allowed. Normally the period of + a start bit is between 4.3 and 4.7 milliseconds. With this command the + period of the start bit is 4.1 milliseconds, this is done by reducing + the time the CEC bus is high. This start bit period is less than is + allowed and the receiver should return to Idle state when this is detected. + +``<op>[,<mode>] tx-long-start`` + Make this start bit period longer than is valid. Normally the period of + a start bit is between 4.3 and 4.7 milliseconds. With this command the + period of the start bit is 5 milliseconds, this is done by increasing + the time the CEC bus is high. This start bit period is more than is + valid and the receiver should return to Idle state when this is detected. + + Even though this start bit period is longer than is valid it is undefined + what a receiver will do. It might just accept it, or it might time out and + return to Idle state. Unfortunately the CEC specification is silent about + this. + +``<op>[,<mode>] tx-last-bit <bit>`` + Just stop transmitting after this bit. If <op> specifies a specific CEC + opcode then the bit position must be at least 18, otherwise the opcode + hasn't been received yet. This command can be used to test how the receiver + reacts when a message just suddenly stops. It should time out and go back + to Idle state. + +``<op>[,<mode>] tx-low-drive <bit>`` + Force a Low Drive condition at this bit position. If <op> specifies a + specific CEC opcode then the bit position must be at least 18, otherwise + the opcode hasn't been received yet. This can be used to test how the + receiver handles Low Drive conditions. Note that if this happens at bit + positions 0-3 the receiver can interpret this as an Arbitration Lost + condition. This is implementation dependent. + +Custom Pulses +------------- + +``tx-custom-low-usecs <usecs>`` + This defines the duration in microseconds that the custom pulse pulls + the CEC line low. The default is 1000 microseconds. + +``tx-custom-high-usecs <usecs>`` + This defines the duration in microseconds that the custom pulse keeps the + CEC line high (unless another CEC adapter pulls it low in that time). + The default is 1000 microseconds. The total period of the custom pulse is + ``tx-custom-low-usecs + tx-custom-high-usecs``. + +``<op>[,<mode>] tx-custom-bit <bit>`` + Send the custom bit instead of a regular data bit. The bit position cannot + be an Ack bit. If <op> specifies a specific CEC opcode then the bit + position must be at least 18, otherwise the opcode hasn't been received yet. + +``<op>[,<mode>] tx-custom-start`` + Send the custom bit instead of a regular start bit. + +``tx-custom-pulse`` + Transmit a single custom pulse as soon as the CEC bus is idle. |