aboutsummaryrefslogtreecommitdiff
path: root/Documentation/userspace-api/media/v4l/colorspaces-details.rst
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/userspace-api/media/v4l/colorspaces-details.rst
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'Documentation/userspace-api/media/v4l/colorspaces-details.rst')
-rw-r--r--Documentation/userspace-api/media/v4l/colorspaces-details.rst775
1 files changed, 775 insertions, 0 deletions
diff --git a/Documentation/userspace-api/media/v4l/colorspaces-details.rst b/Documentation/userspace-api/media/v4l/colorspaces-details.rst
new file mode 100644
index 000000000..26a4ace42
--- /dev/null
+++ b/Documentation/userspace-api/media/v4l/colorspaces-details.rst
@@ -0,0 +1,775 @@
+.. SPDX-License-Identifier: GFDL-1.1-no-invariants-or-later
+
+********************************
+Detailed Colorspace Descriptions
+********************************
+
+
+.. _col-smpte-170m:
+
+Colorspace SMPTE 170M (V4L2_COLORSPACE_SMPTE170M)
+=================================================
+
+The :ref:`smpte170m` standard defines the colorspace used by NTSC and
+PAL and by SDTV in general. The default transfer function is
+``V4L2_XFER_FUNC_709``. The default Y'CbCr encoding is
+``V4L2_YCBCR_ENC_601``. The default Y'CbCr quantization is limited
+range. The chromaticities of the primary colors and the white reference
+are:
+
+.. flat-table:: SMPTE 170M Chromaticities
+ :header-rows: 1
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - Color
+ - x
+ - y
+ * - Red
+ - 0.630
+ - 0.340
+ * - Green
+ - 0.310
+ - 0.595
+ * - Blue
+ - 0.155
+ - 0.070
+ * - White Reference (D65)
+ - 0.3127
+ - 0.3290
+
+
+The red, green and blue chromaticities are also often referred to as the
+SMPTE C set, so this colorspace is sometimes called SMPTE C as well.
+
+The transfer function defined for SMPTE 170M is the same as the one
+defined in Rec. 709.
+
+.. math::
+
+ L' = -1.099(-L)^{0.45} + 0.099 \text{, for } L \le-0.018
+
+ L' = 4.5L \text{, for } -0.018 < L < 0.018
+
+ L' = 1.099L^{0.45} - 0.099 \text{, for } L \ge 0.018
+
+Inverse Transfer function:
+
+.. math::
+
+ L = -\left( \frac{L' - 0.099}{-1.099} \right) ^{\frac{1}{0.45}} \text{, for } L' \le -0.081
+
+ L = \frac{L'}{4.5} \text{, for } -0.081 < L' < 0.081
+
+ L = \left(\frac{L' + 0.099}{1.099}\right)^{\frac{1}{0.45} } \text{, for } L' \ge 0.081
+
+The luminance (Y') and color difference (Cb and Cr) are obtained with
+the following ``V4L2_YCBCR_ENC_601`` encoding:
+
+.. math::
+
+ Y' = 0.2990R' + 0.5870G' + 0.1140B'
+
+ Cb = -0.1687R' - 0.3313G' + 0.5B'
+
+ Cr = 0.5R' - 0.4187G' - 0.0813B'
+
+Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range
+[-0.5…0.5]. This conversion to Y'CbCr is identical to the one defined in
+the :ref:`itu601` standard and this colorspace is sometimes called
+BT.601 as well, even though BT.601 does not mention any color primaries.
+
+The default quantization is limited range, but full range is possible
+although rarely seen.
+
+
+.. _col-rec709:
+
+Colorspace Rec. 709 (V4L2_COLORSPACE_REC709)
+============================================
+
+The :ref:`itu709` standard defines the colorspace used by HDTV in
+general. The default transfer function is ``V4L2_XFER_FUNC_709``. The
+default Y'CbCr encoding is ``V4L2_YCBCR_ENC_709``. The default Y'CbCr
+quantization is limited range. The chromaticities of the primary colors
+and the white reference are:
+
+.. flat-table:: Rec. 709 Chromaticities
+ :header-rows: 1
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - Color
+ - x
+ - y
+ * - Red
+ - 0.640
+ - 0.330
+ * - Green
+ - 0.300
+ - 0.600
+ * - Blue
+ - 0.150
+ - 0.060
+ * - White Reference (D65)
+ - 0.3127
+ - 0.3290
+
+
+The full name of this standard is Rec. ITU-R BT.709-5.
+
+Transfer function. Normally L is in the range [0…1], but for the
+extended gamut xvYCC encoding values outside that range are allowed.
+
+.. math::
+
+ L' = -1.099(-L)^{0.45} + 0.099 \text{, for } L \le -0.018
+
+ L' = 4.5L \text{, for } -0.018 < L < 0.018
+
+ L' = 1.099L^{0.45} - 0.099 \text{, for } L \ge 0.018
+
+Inverse Transfer function:
+
+.. math::
+
+ L = -\left( \frac{L' - 0.099}{-1.099} \right)^\frac{1}{0.45} \text{, for } L' \le -0.081
+
+ L = \frac{L'}{4.5}\text{, for } -0.081 < L' < 0.081
+
+ L = \left(\frac{L' + 0.099}{1.099}\right)^{\frac{1}{0.45} } \text{, for } L' \ge 0.081
+
+The luminance (Y') and color difference (Cb and Cr) are obtained with
+the following ``V4L2_YCBCR_ENC_709`` encoding:
+
+.. math::
+
+ Y' = 0.2126R' + 0.7152G' + 0.0722B'
+
+ Cb = -0.1146R' - 0.3854G' + 0.5B'
+
+ Cr = 0.5R' - 0.4542G' - 0.0458B'
+
+Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range
+[-0.5…0.5].
+
+The default quantization is limited range, but full range is possible
+although rarely seen.
+
+The ``V4L2_YCBCR_ENC_709`` encoding described above is the default for
+this colorspace, but it can be overridden with ``V4L2_YCBCR_ENC_601``,
+in which case the BT.601 Y'CbCr encoding is used.
+
+Two additional extended gamut Y'CbCr encodings are also possible with
+this colorspace:
+
+The xvYCC 709 encoding (``V4L2_YCBCR_ENC_XV709``, :ref:`xvycc`) is
+similar to the Rec. 709 encoding, but it allows for R', G' and B' values
+that are outside the range [0…1]. The resulting Y', Cb and Cr values are
+scaled and offset according to the limited range formula:
+
+.. math::
+
+ Y' = \frac{219}{256} * (0.2126R' + 0.7152G' + 0.0722B') + \frac{16}{256}
+
+ Cb = \frac{224}{256} * (-0.1146R' - 0.3854G' + 0.5B')
+
+ Cr = \frac{224}{256} * (0.5R' - 0.4542G' - 0.0458B')
+
+The xvYCC 601 encoding (``V4L2_YCBCR_ENC_XV601``, :ref:`xvycc`) is
+similar to the BT.601 encoding, but it allows for R', G' and B' values
+that are outside the range [0…1]. The resulting Y', Cb and Cr values are
+scaled and offset according to the limited range formula:
+
+.. math::
+
+ Y' = \frac{219}{256} * (0.2990R' + 0.5870G' + 0.1140B') + \frac{16}{256}
+
+ Cb = \frac{224}{256} * (-0.1687R' - 0.3313G' + 0.5B')
+
+ Cr = \frac{224}{256} * (0.5R' - 0.4187G' - 0.0813B')
+
+Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range
+[-0.5…0.5] and quantized without further scaling or offsets.
+The non-standard xvYCC 709 or xvYCC 601 encodings can be
+used by selecting ``V4L2_YCBCR_ENC_XV709`` or ``V4L2_YCBCR_ENC_XV601``.
+As seen by the xvYCC formulas these encodings always use limited range quantization,
+there is no full range variant. The whole point of these extended gamut encodings
+is that values outside the limited range are still valid, although they
+map to R', G' and B' values outside the [0…1] range and are therefore outside
+the Rec. 709 colorspace gamut.
+
+
+.. _col-srgb:
+
+Colorspace sRGB (V4L2_COLORSPACE_SRGB)
+======================================
+
+The :ref:`srgb` standard defines the colorspace used by most webcams
+and computer graphics. The default transfer function is
+``V4L2_XFER_FUNC_SRGB``. The default Y'CbCr encoding is
+``V4L2_YCBCR_ENC_601``. The default Y'CbCr quantization is limited range.
+
+Note that the :ref:`sycc` standard specifies full range quantization,
+however all current capture hardware supported by the kernel convert
+R'G'B' to limited range Y'CbCr. So choosing full range as the default
+would break how applications interpret the quantization range.
+
+The chromaticities of the primary colors and the white reference are:
+
+.. flat-table:: sRGB Chromaticities
+ :header-rows: 1
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - Color
+ - x
+ - y
+ * - Red
+ - 0.640
+ - 0.330
+ * - Green
+ - 0.300
+ - 0.600
+ * - Blue
+ - 0.150
+ - 0.060
+ * - White Reference (D65)
+ - 0.3127
+ - 0.3290
+
+
+These chromaticities are identical to the Rec. 709 colorspace.
+
+Transfer function. Note that negative values for L are only used by the
+Y'CbCr conversion.
+
+.. math::
+
+ L' = -1.055(-L)^{\frac{1}{2.4} } + 0.055\text{, for }L < -0.0031308
+
+ L' = 12.92L\text{, for }-0.0031308 \le L \le 0.0031308
+
+ L' = 1.055L ^{\frac{1}{2.4} } - 0.055\text{, for }0.0031308 < L \le 1
+
+Inverse Transfer function:
+
+.. math::
+
+ L = -((-L' + 0.055) / 1.055) ^{2.4}\text{, for }L' < -0.04045
+
+ L = L' / 12.92\text{, for }-0.04045 \le L' \le 0.04045
+
+ L = ((L' + 0.055) / 1.055) ^{2.4}\text{, for }L' > 0.04045
+
+The luminance (Y') and color difference (Cb and Cr) are obtained with
+the following ``V4L2_YCBCR_ENC_601`` encoding as defined by :ref:`sycc`:
+
+.. math::
+
+ Y' = 0.2990R' + 0.5870G' + 0.1140B'
+
+ Cb = -0.1687R' - 0.3313G' + 0.5B'
+
+ Cr = 0.5R' - 0.4187G' - 0.0813B'
+
+Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range
+[-0.5…0.5]. This transform is identical to one defined in SMPTE
+170M/BT.601. The Y'CbCr quantization is limited range.
+
+
+.. _col-oprgb:
+
+Colorspace opRGB (V4L2_COLORSPACE_OPRGB)
+===============================================
+
+The :ref:`oprgb` standard defines the colorspace used by computer
+graphics that use the opRGB colorspace. The default transfer function is
+``V4L2_XFER_FUNC_OPRGB``. The default Y'CbCr encoding is
+``V4L2_YCBCR_ENC_601``. The default Y'CbCr quantization is limited
+range.
+
+Note that the :ref:`oprgb` standard specifies full range quantization,
+however all current capture hardware supported by the kernel convert
+R'G'B' to limited range Y'CbCr. So choosing full range as the default
+would break how applications interpret the quantization range.
+
+The chromaticities of the primary colors and the white reference are:
+
+.. flat-table:: opRGB Chromaticities
+ :header-rows: 1
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - Color
+ - x
+ - y
+ * - Red
+ - 0.6400
+ - 0.3300
+ * - Green
+ - 0.2100
+ - 0.7100
+ * - Blue
+ - 0.1500
+ - 0.0600
+ * - White Reference (D65)
+ - 0.3127
+ - 0.3290
+
+
+
+Transfer function:
+
+.. math::
+
+ L' = L ^{\frac{1}{2.19921875}}
+
+Inverse Transfer function:
+
+.. math::
+
+ L = L'^{(2.19921875)}
+
+The luminance (Y') and color difference (Cb and Cr) are obtained with
+the following ``V4L2_YCBCR_ENC_601`` encoding:
+
+.. math::
+
+ Y' = 0.2990R' + 0.5870G' + 0.1140B'
+
+ Cb = -0.1687R' - 0.3313G' + 0.5B'
+
+ Cr = 0.5R' - 0.4187G' - 0.0813B'
+
+Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range
+[-0.5…0.5]. This transform is identical to one defined in SMPTE
+170M/BT.601. The Y'CbCr quantization is limited range.
+
+
+.. _col-bt2020:
+
+Colorspace BT.2020 (V4L2_COLORSPACE_BT2020)
+===========================================
+
+The :ref:`itu2020` standard defines the colorspace used by Ultra-high
+definition television (UHDTV). The default transfer function is
+``V4L2_XFER_FUNC_709``. The default Y'CbCr encoding is
+``V4L2_YCBCR_ENC_BT2020``. The default Y'CbCr quantization is limited range.
+The chromaticities of the primary colors and the white reference are:
+
+.. flat-table:: BT.2020 Chromaticities
+ :header-rows: 1
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - Color
+ - x
+ - y
+ * - Red
+ - 0.708
+ - 0.292
+ * - Green
+ - 0.170
+ - 0.797
+ * - Blue
+ - 0.131
+ - 0.046
+ * - White Reference (D65)
+ - 0.3127
+ - 0.3290
+
+
+
+Transfer function (same as Rec. 709):
+
+.. math::
+
+ L' = 4.5L\text{, for }0 \le L < 0.018
+
+ L' = 1.099L ^{0.45} - 0.099\text{, for } 0.018 \le L \le 1
+
+Inverse Transfer function:
+
+.. math::
+
+ L = L' / 4.5\text{, for } L' < 0.081
+
+ L = \left( \frac{L' + 0.099}{1.099}\right) ^{\frac{1}{0.45} }\text{, for } L' \ge 0.081
+
+Please note that while Rec. 709 is defined as the default transfer function
+by the :ref:`itu2020` standard, in practice this colorspace is often used
+with the :ref:`xf-smpte-2084`. In particular Ultra HD Blu-ray discs use
+this combination.
+
+The luminance (Y') and color difference (Cb and Cr) are obtained with
+the following ``V4L2_YCBCR_ENC_BT2020`` encoding:
+
+.. math::
+
+ Y' = 0.2627R' + 0.6780G' + 0.0593B'
+
+ Cb = -0.1396R' - 0.3604G' + 0.5B'
+
+ Cr = 0.5R' - 0.4598G' - 0.0402B'
+
+Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range
+[-0.5…0.5]. The Y'CbCr quantization is limited range.
+
+There is also an alternate constant luminance R'G'B' to Yc'CbcCrc
+(``V4L2_YCBCR_ENC_BT2020_CONST_LUM``) encoding:
+
+Luma:
+
+.. math::
+ :nowrap:
+
+ \begin{align*}
+ Yc' = (0.2627R + 0.6780G + 0.0593B)'& \\
+ B' - Yc' \le 0:& \\
+ &Cbc = (B' - Yc') / 1.9404 \\
+ B' - Yc' > 0: & \\
+ &Cbc = (B' - Yc') / 1.5816 \\
+ R' - Yc' \le 0:& \\
+ &Crc = (R' - Y') / 1.7184 \\
+ R' - Yc' > 0:& \\
+ &Crc = (R' - Y') / 0.9936
+ \end{align*}
+
+Yc' is clamped to the range [0…1] and Cbc and Crc are clamped to the
+range [-0.5…0.5]. The Yc'CbcCrc quantization is limited range.
+
+
+.. _col-dcip3:
+
+Colorspace DCI-P3 (V4L2_COLORSPACE_DCI_P3)
+==========================================
+
+The :ref:`smpte431` standard defines the colorspace used by cinema
+projectors that use the DCI-P3 colorspace. The default transfer function
+is ``V4L2_XFER_FUNC_DCI_P3``. The default Y'CbCr encoding is
+``V4L2_YCBCR_ENC_709``. The default Y'CbCr quantization is limited range.
+
+.. note::
+
+ Note that this colorspace standard does not specify a
+ Y'CbCr encoding since it is not meant to be encoded to Y'CbCr. So this
+ default Y'CbCr encoding was picked because it is the HDTV encoding.
+
+The chromaticities of the primary colors and the white reference are:
+
+
+.. flat-table:: DCI-P3 Chromaticities
+ :header-rows: 1
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - Color
+ - x
+ - y
+ * - Red
+ - 0.6800
+ - 0.3200
+ * - Green
+ - 0.2650
+ - 0.6900
+ * - Blue
+ - 0.1500
+ - 0.0600
+ * - White Reference
+ - 0.3140
+ - 0.3510
+
+
+
+Transfer function:
+
+.. math::
+
+ L' = L^{\frac{1}{2.6}}
+
+Inverse Transfer function:
+
+.. math::
+
+ L = L'^{(2.6)}
+
+Y'CbCr encoding is not specified. V4L2 defaults to Rec. 709.
+
+
+.. _col-smpte-240m:
+
+Colorspace SMPTE 240M (V4L2_COLORSPACE_SMPTE240M)
+=================================================
+
+The :ref:`smpte240m` standard was an interim standard used during the
+early days of HDTV (1988-1998). It has been superseded by Rec. 709. The
+default transfer function is ``V4L2_XFER_FUNC_SMPTE240M``. The default
+Y'CbCr encoding is ``V4L2_YCBCR_ENC_SMPTE240M``. The default Y'CbCr
+quantization is limited range. The chromaticities of the primary colors
+and the white reference are:
+
+
+.. flat-table:: SMPTE 240M Chromaticities
+ :header-rows: 1
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - Color
+ - x
+ - y
+ * - Red
+ - 0.630
+ - 0.340
+ * - Green
+ - 0.310
+ - 0.595
+ * - Blue
+ - 0.155
+ - 0.070
+ * - White Reference (D65)
+ - 0.3127
+ - 0.3290
+
+
+These chromaticities are identical to the SMPTE 170M colorspace.
+
+Transfer function:
+
+.. math::
+
+ L' = 4L\text{, for } 0 \le L < 0.0228
+
+ L' = 1.1115L ^{0.45} - 0.1115\text{, for } 0.0228 \le L \le 1
+
+Inverse Transfer function:
+
+.. math::
+
+ L = \frac{L'}{4}\text{, for } 0 \le L' < 0.0913
+
+ L = \left( \frac{L' + 0.1115}{1.1115}\right) ^{\frac{1}{0.45} }\text{, for } L' \ge 0.0913
+
+The luminance (Y') and color difference (Cb and Cr) are obtained with
+the following ``V4L2_YCBCR_ENC_SMPTE240M`` encoding:
+
+.. math::
+
+ Y' = 0.2122R' + 0.7013G' + 0.0865B'
+
+ Cb = -0.1161R' - 0.3839G' + 0.5B'
+
+ Cr = 0.5R' - 0.4451G' - 0.0549B'
+
+Y' is clamped to the range [0…1] and Cb and Cr are clamped to the
+range [-0.5…0.5]. The Y'CbCr quantization is limited range.
+
+
+.. _col-sysm:
+
+Colorspace NTSC 1953 (V4L2_COLORSPACE_470_SYSTEM_M)
+===================================================
+
+This standard defines the colorspace used by NTSC in 1953. In practice
+this colorspace is obsolete and SMPTE 170M should be used instead. The
+default transfer function is ``V4L2_XFER_FUNC_709``. The default Y'CbCr
+encoding is ``V4L2_YCBCR_ENC_601``. The default Y'CbCr quantization is
+limited range. The chromaticities of the primary colors and the white
+reference are:
+
+
+.. flat-table:: NTSC 1953 Chromaticities
+ :header-rows: 1
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - Color
+ - x
+ - y
+ * - Red
+ - 0.67
+ - 0.33
+ * - Green
+ - 0.21
+ - 0.71
+ * - Blue
+ - 0.14
+ - 0.08
+ * - White Reference (C)
+ - 0.310
+ - 0.316
+
+
+.. note::
+
+ This colorspace uses Illuminant C instead of D65 as the white
+ reference. To correctly convert an image in this colorspace to another
+ that uses D65 you need to apply a chromatic adaptation algorithm such as
+ the Bradford method.
+
+The transfer function was never properly defined for NTSC 1953. The Rec.
+709 transfer function is recommended in the literature:
+
+.. math::
+
+ L' = 4.5L\text{, for } 0 \le L < 0.018
+
+ L' = 1.099L ^{0.45} - 0.099\text{, for } 0.018 \le L \le 1
+
+Inverse Transfer function:
+
+.. math::
+
+ L = \frac{L'}{4.5} \text{, for } L' < 0.081
+
+ L = \left( \frac{L' + 0.099}{1.099}\right) ^{\frac{1}{0.45} }\text{, for } L' \ge 0.081
+
+The luminance (Y') and color difference (Cb and Cr) are obtained with
+the following ``V4L2_YCBCR_ENC_601`` encoding:
+
+.. math::
+
+ Y' = 0.2990R' + 0.5870G' + 0.1140B'
+
+ Cb = -0.1687R' - 0.3313G' + 0.5B'
+
+ Cr = 0.5R' - 0.4187G' - 0.0813B'
+
+Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range
+[-0.5…0.5]. The Y'CbCr quantization is limited range. This transform is
+identical to one defined in SMPTE 170M/BT.601.
+
+
+.. _col-sysbg:
+
+Colorspace EBU Tech. 3213 (V4L2_COLORSPACE_470_SYSTEM_BG)
+=========================================================
+
+The :ref:`tech3213` standard defines the colorspace used by PAL/SECAM
+in 1975. Note that this colorspace is not supported by the HDMI interface.
+Instead :ref:`tech3321` recommends that Rec. 709 is used instead for HDMI.
+The default transfer function is
+``V4L2_XFER_FUNC_709``. The default Y'CbCr encoding is
+``V4L2_YCBCR_ENC_601``. The default Y'CbCr quantization is limited
+range. The chromaticities of the primary colors and the white reference
+are:
+
+
+.. flat-table:: EBU Tech. 3213 Chromaticities
+ :header-rows: 1
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - Color
+ - x
+ - y
+ * - Red
+ - 0.64
+ - 0.33
+ * - Green
+ - 0.29
+ - 0.60
+ * - Blue
+ - 0.15
+ - 0.06
+ * - White Reference (D65)
+ - 0.3127
+ - 0.3290
+
+
+
+The transfer function was never properly defined for this colorspace.
+The Rec. 709 transfer function is recommended in the literature:
+
+.. math::
+
+ L' = 4.5L\text{, for } 0 \le L < 0.018
+
+ L' = 1.099L ^{0.45} - 0.099\text{, for } 0.018 \le L \le 1
+
+Inverse Transfer function:
+
+.. math::
+
+ L = \frac{L'}{4.5} \text{, for } L' < 0.081
+
+ L = \left(\frac{L' + 0.099}{1.099} \right) ^{\frac{1}{0.45} }\text{, for } L' \ge 0.081
+
+The luminance (Y') and color difference (Cb and Cr) are obtained with
+the following ``V4L2_YCBCR_ENC_601`` encoding:
+
+.. math::
+
+ Y' = 0.2990R' + 0.5870G' + 0.1140B'
+
+ Cb = -0.1687R' - 0.3313G' + 0.5B'
+
+ Cr = 0.5R' - 0.4187G' - 0.0813B'
+
+Y' is clamped to the range [0…1] and Cb and Cr are clamped to the range
+[-0.5…0.5]. The Y'CbCr quantization is limited range. This transform is
+identical to one defined in SMPTE 170M/BT.601.
+
+
+.. _col-jpeg:
+
+Colorspace JPEG (V4L2_COLORSPACE_JPEG)
+======================================
+
+This colorspace defines the colorspace used by most (Motion-)JPEG
+formats. The chromaticities of the primary colors and the white
+reference are identical to sRGB. The transfer function use is
+``V4L2_XFER_FUNC_SRGB``. The Y'CbCr encoding is ``V4L2_YCBCR_ENC_601``
+with full range quantization where Y' is scaled to [0…255] and Cb/Cr are
+scaled to [-128…128] and then clipped to [-128…127].
+
+.. note::
+
+ The JPEG standard does not actually store colorspace
+ information. So if something other than sRGB is used, then the driver
+ will have to set that information explicitly. Effectively
+ ``V4L2_COLORSPACE_JPEG`` can be considered to be an abbreviation for
+ ``V4L2_COLORSPACE_SRGB``, ``V4L2_XFER_FUNC_SRGB``, ``V4L2_YCBCR_ENC_601``
+ and ``V4L2_QUANTIZATION_FULL_RANGE``.
+
+***************************************
+Detailed Transfer Function Descriptions
+***************************************
+
+.. _xf-smpte-2084:
+
+Transfer Function SMPTE 2084 (V4L2_XFER_FUNC_SMPTE2084)
+=======================================================
+
+The :ref:`smpte2084` standard defines the transfer function used by
+High Dynamic Range content.
+
+Constants:
+ m1 = (2610 / 4096) / 4
+
+ m2 = (2523 / 4096) * 128
+
+ c1 = 3424 / 4096
+
+ c2 = (2413 / 4096) * 32
+
+ c3 = (2392 / 4096) * 32
+
+Transfer function:
+ L' = ((c1 + c2 * L\ :sup:`m1`) / (1 + c3 * L\ :sup:`m1`))\ :sup:`m2`
+
+Inverse Transfer function:
+ L = (max(L':sup:`1/m2` - c1, 0) / (c2 - c3 *
+ L'\ :sup:`1/m2`))\ :sup:`1/m1`
+
+Take care when converting between this transfer function and non-HDR transfer
+functions: the linear RGB values [0…1] of HDR content map to a luminance range
+of 0 to 10000 cd/m\ :sup:`2` whereas the linear RGB values of non-HDR (aka
+Standard Dynamic Range or SDR) map to a luminance range of 0 to 100 cd/m\ :sup:`2`.
+
+To go from SDR to HDR you will have to divide L by 100 first. To go in the other
+direction you will have to multiply L by 100. Of course, this clamps all
+luminance values over 100 cd/m\ :sup:`2` to 100 cd/m\ :sup:`2`.
+
+There are better methods, see e.g. :ref:`colimg` for more in-depth information
+about this.