aboutsummaryrefslogtreecommitdiff
path: root/Documentation/userspace-api/seccomp_filter.rst
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/userspace-api/seccomp_filter.rst
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'Documentation/userspace-api/seccomp_filter.rst')
-rw-r--r--Documentation/userspace-api/seccomp_filter.rst376
1 files changed, 376 insertions, 0 deletions
diff --git a/Documentation/userspace-api/seccomp_filter.rst b/Documentation/userspace-api/seccomp_filter.rst
new file mode 100644
index 000000000..d1e2b9193
--- /dev/null
+++ b/Documentation/userspace-api/seccomp_filter.rst
@@ -0,0 +1,376 @@
+===========================================
+Seccomp BPF (SECure COMPuting with filters)
+===========================================
+
+Introduction
+============
+
+A large number of system calls are exposed to every userland process
+with many of them going unused for the entire lifetime of the process.
+As system calls change and mature, bugs are found and eradicated. A
+certain subset of userland applications benefit by having a reduced set
+of available system calls. The resulting set reduces the total kernel
+surface exposed to the application. System call filtering is meant for
+use with those applications.
+
+Seccomp filtering provides a means for a process to specify a filter for
+incoming system calls. The filter is expressed as a Berkeley Packet
+Filter (BPF) program, as with socket filters, except that the data
+operated on is related to the system call being made: system call
+number and the system call arguments. This allows for expressive
+filtering of system calls using a filter program language with a long
+history of being exposed to userland and a straightforward data set.
+
+Additionally, BPF makes it impossible for users of seccomp to fall prey
+to time-of-check-time-of-use (TOCTOU) attacks that are common in system
+call interposition frameworks. BPF programs may not dereference
+pointers which constrains all filters to solely evaluating the system
+call arguments directly.
+
+What it isn't
+=============
+
+System call filtering isn't a sandbox. It provides a clearly defined
+mechanism for minimizing the exposed kernel surface. It is meant to be
+a tool for sandbox developers to use. Beyond that, policy for logical
+behavior and information flow should be managed with a combination of
+other system hardening techniques and, potentially, an LSM of your
+choosing. Expressive, dynamic filters provide further options down this
+path (avoiding pathological sizes or selecting which of the multiplexed
+system calls in socketcall() is allowed, for instance) which could be
+construed, incorrectly, as a more complete sandboxing solution.
+
+Usage
+=====
+
+An additional seccomp mode is added and is enabled using the same
+prctl(2) call as the strict seccomp. If the architecture has
+``CONFIG_HAVE_ARCH_SECCOMP_FILTER``, then filters may be added as below:
+
+``PR_SET_SECCOMP``:
+ Now takes an additional argument which specifies a new filter
+ using a BPF program.
+ The BPF program will be executed over struct seccomp_data
+ reflecting the system call number, arguments, and other
+ metadata. The BPF program must then return one of the
+ acceptable values to inform the kernel which action should be
+ taken.
+
+ Usage::
+
+ prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, prog);
+
+ The 'prog' argument is a pointer to a struct sock_fprog which
+ will contain the filter program. If the program is invalid, the
+ call will return -1 and set errno to ``EINVAL``.
+
+ If ``fork``/``clone`` and ``execve`` are allowed by @prog, any child
+ processes will be constrained to the same filters and system
+ call ABI as the parent.
+
+ Prior to use, the task must call ``prctl(PR_SET_NO_NEW_PRIVS, 1)`` or
+ run with ``CAP_SYS_ADMIN`` privileges in its namespace. If these are not
+ true, ``-EACCES`` will be returned. This requirement ensures that filter
+ programs cannot be applied to child processes with greater privileges
+ than the task that installed them.
+
+ Additionally, if ``prctl(2)`` is allowed by the attached filter,
+ additional filters may be layered on which will increase evaluation
+ time, but allow for further decreasing the attack surface during
+ execution of a process.
+
+The above call returns 0 on success and non-zero on error.
+
+Return values
+=============
+
+A seccomp filter may return any of the following values. If multiple
+filters exist, the return value for the evaluation of a given system
+call will always use the highest precedent value. (For example,
+``SECCOMP_RET_KILL_PROCESS`` will always take precedence.)
+
+In precedence order, they are:
+
+``SECCOMP_RET_KILL_PROCESS``:
+ Results in the entire process exiting immediately without executing
+ the system call. The exit status of the task (``status & 0x7f``)
+ will be ``SIGSYS``, not ``SIGKILL``.
+
+``SECCOMP_RET_KILL_THREAD``:
+ Results in the task exiting immediately without executing the
+ system call. The exit status of the task (``status & 0x7f``) will
+ be ``SIGSYS``, not ``SIGKILL``.
+
+``SECCOMP_RET_TRAP``:
+ Results in the kernel sending a ``SIGSYS`` signal to the triggering
+ task without executing the system call. ``siginfo->si_call_addr``
+ will show the address of the system call instruction, and
+ ``siginfo->si_syscall`` and ``siginfo->si_arch`` will indicate which
+ syscall was attempted. The program counter will be as though
+ the syscall happened (i.e. it will not point to the syscall
+ instruction). The return value register will contain an arch-
+ dependent value -- if resuming execution, set it to something
+ sensible. (The architecture dependency is because replacing
+ it with ``-ENOSYS`` could overwrite some useful information.)
+
+ The ``SECCOMP_RET_DATA`` portion of the return value will be passed
+ as ``si_errno``.
+
+ ``SIGSYS`` triggered by seccomp will have a si_code of ``SYS_SECCOMP``.
+
+``SECCOMP_RET_ERRNO``:
+ Results in the lower 16-bits of the return value being passed
+ to userland as the errno without executing the system call.
+
+``SECCOMP_RET_USER_NOTIF``:
+ Results in a ``struct seccomp_notif`` message sent on the userspace
+ notification fd, if it is attached, or ``-ENOSYS`` if it is not. See
+ below on discussion of how to handle user notifications.
+
+``SECCOMP_RET_TRACE``:
+ When returned, this value will cause the kernel to attempt to
+ notify a ``ptrace()``-based tracer prior to executing the system
+ call. If there is no tracer present, ``-ENOSYS`` is returned to
+ userland and the system call is not executed.
+
+ A tracer will be notified if it requests ``PTRACE_O_TRACESECCOMP``
+ using ``ptrace(PTRACE_SETOPTIONS)``. The tracer will be notified
+ of a ``PTRACE_EVENT_SECCOMP`` and the ``SECCOMP_RET_DATA`` portion of
+ the BPF program return value will be available to the tracer
+ via ``PTRACE_GETEVENTMSG``.
+
+ The tracer can skip the system call by changing the syscall number
+ to -1. Alternatively, the tracer can change the system call
+ requested by changing the system call to a valid syscall number. If
+ the tracer asks to skip the system call, then the system call will
+ appear to return the value that the tracer puts in the return value
+ register.
+
+ The seccomp check will not be run again after the tracer is
+ notified. (This means that seccomp-based sandboxes MUST NOT
+ allow use of ptrace, even of other sandboxed processes, without
+ extreme care; ptracers can use this mechanism to escape.)
+
+``SECCOMP_RET_LOG``:
+ Results in the system call being executed after it is logged. This
+ should be used by application developers to learn which syscalls their
+ application needs without having to iterate through multiple test and
+ development cycles to build the list.
+
+ This action will only be logged if "log" is present in the
+ actions_logged sysctl string.
+
+``SECCOMP_RET_ALLOW``:
+ Results in the system call being executed.
+
+If multiple filters exist, the return value for the evaluation of a
+given system call will always use the highest precedent value.
+
+Precedence is only determined using the ``SECCOMP_RET_ACTION`` mask. When
+multiple filters return values of the same precedence, only the
+``SECCOMP_RET_DATA`` from the most recently installed filter will be
+returned.
+
+Pitfalls
+========
+
+The biggest pitfall to avoid during use is filtering on system call
+number without checking the architecture value. Why? On any
+architecture that supports multiple system call invocation conventions,
+the system call numbers may vary based on the specific invocation. If
+the numbers in the different calling conventions overlap, then checks in
+the filters may be abused. Always check the arch value!
+
+Example
+=======
+
+The ``samples/seccomp/`` directory contains both an x86-specific example
+and a more generic example of a higher level macro interface for BPF
+program generation.
+
+Userspace Notification
+======================
+
+The ``SECCOMP_RET_USER_NOTIF`` return code lets seccomp filters pass a
+particular syscall to userspace to be handled. This may be useful for
+applications like container managers, which wish to intercept particular
+syscalls (``mount()``, ``finit_module()``, etc.) and change their behavior.
+
+To acquire a notification FD, use the ``SECCOMP_FILTER_FLAG_NEW_LISTENER``
+argument to the ``seccomp()`` syscall:
+
+.. code-block:: c
+
+ fd = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_NEW_LISTENER, &prog);
+
+which (on success) will return a listener fd for the filter, which can then be
+passed around via ``SCM_RIGHTS`` or similar. Note that filter fds correspond to
+a particular filter, and not a particular task. So if this task then forks,
+notifications from both tasks will appear on the same filter fd. Reads and
+writes to/from a filter fd are also synchronized, so a filter fd can safely
+have many readers.
+
+The interface for a seccomp notification fd consists of two structures:
+
+.. code-block:: c
+
+ struct seccomp_notif_sizes {
+ __u16 seccomp_notif;
+ __u16 seccomp_notif_resp;
+ __u16 seccomp_data;
+ };
+
+ struct seccomp_notif {
+ __u64 id;
+ __u32 pid;
+ __u32 flags;
+ struct seccomp_data data;
+ };
+
+ struct seccomp_notif_resp {
+ __u64 id;
+ __s64 val;
+ __s32 error;
+ __u32 flags;
+ };
+
+The ``struct seccomp_notif_sizes`` structure can be used to determine the size
+of the various structures used in seccomp notifications. The size of ``struct
+seccomp_data`` may change in the future, so code should use:
+
+.. code-block:: c
+
+ struct seccomp_notif_sizes sizes;
+ seccomp(SECCOMP_GET_NOTIF_SIZES, 0, &sizes);
+
+to determine the size of the various structures to allocate. See
+samples/seccomp/user-trap.c for an example.
+
+Users can read via ``ioctl(SECCOMP_IOCTL_NOTIF_RECV)`` (or ``poll()``) on a
+seccomp notification fd to receive a ``struct seccomp_notif``, which contains
+five members: the input length of the structure, a unique-per-filter ``id``,
+the ``pid`` of the task which triggered this request (which may be 0 if the
+task is in a pid ns not visible from the listener's pid namespace). The
+notification also contains the ``data`` passed to seccomp, and a filters flag.
+The structure should be zeroed out prior to calling the ioctl.
+
+Userspace can then make a decision based on this information about what to do,
+and ``ioctl(SECCOMP_IOCTL_NOTIF_SEND)`` a response, indicating what should be
+returned to userspace. The ``id`` member of ``struct seccomp_notif_resp`` should
+be the same ``id`` as in ``struct seccomp_notif``.
+
+Userspace can also add file descriptors to the notifying process via
+``ioctl(SECCOMP_IOCTL_NOTIF_ADDFD)``. The ``id`` member of
+``struct seccomp_notif_addfd`` should be the same ``id`` as in
+``struct seccomp_notif``. The ``newfd_flags`` flag may be used to set flags
+like O_CLOEXEC on the file descriptor in the notifying process. If the supervisor
+wants to inject the file descriptor with a specific number, the
+``SECCOMP_ADDFD_FLAG_SETFD`` flag can be used, and set the ``newfd`` member to
+the specific number to use. If that file descriptor is already open in the
+notifying process it will be replaced. The supervisor can also add an FD, and
+respond atomically by using the ``SECCOMP_ADDFD_FLAG_SEND`` flag and the return
+value will be the injected file descriptor number.
+
+The notifying process can be preempted, resulting in the notification being
+aborted. This can be problematic when trying to take actions on behalf of the
+notifying process that are long-running and typically retryable (mounting a
+filesytem). Alternatively, at filter installation time, the
+``SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV`` flag can be set. This flag makes it
+such that when a user notification is received by the supervisor, the notifying
+process will ignore non-fatal signals until the response is sent. Signals that
+are sent prior to the notification being received by userspace are handled
+normally.
+
+It is worth noting that ``struct seccomp_data`` contains the values of register
+arguments to the syscall, but does not contain pointers to memory. The task's
+memory is accessible to suitably privileged traces via ``ptrace()`` or
+``/proc/pid/mem``. However, care should be taken to avoid the TOCTOU mentioned
+above in this document: all arguments being read from the tracee's memory
+should be read into the tracer's memory before any policy decisions are made.
+This allows for an atomic decision on syscall arguments.
+
+Sysctls
+=======
+
+Seccomp's sysctl files can be found in the ``/proc/sys/kernel/seccomp/``
+directory. Here's a description of each file in that directory:
+
+``actions_avail``:
+ A read-only ordered list of seccomp return values (refer to the
+ ``SECCOMP_RET_*`` macros above) in string form. The ordering, from
+ left-to-right, is the least permissive return value to the most
+ permissive return value.
+
+ The list represents the set of seccomp return values supported
+ by the kernel. A userspace program may use this list to
+ determine if the actions found in the ``seccomp.h``, when the
+ program was built, differs from the set of actions actually
+ supported in the current running kernel.
+
+``actions_logged``:
+ A read-write ordered list of seccomp return values (refer to the
+ ``SECCOMP_RET_*`` macros above) that are allowed to be logged. Writes
+ to the file do not need to be in ordered form but reads from the file
+ will be ordered in the same way as the actions_avail sysctl.
+
+ The ``allow`` string is not accepted in the ``actions_logged`` sysctl
+ as it is not possible to log ``SECCOMP_RET_ALLOW`` actions. Attempting
+ to write ``allow`` to the sysctl will result in an EINVAL being
+ returned.
+
+Adding architecture support
+===========================
+
+See ``arch/Kconfig`` for the authoritative requirements. In general, if an
+architecture supports both ptrace_event and seccomp, it will be able to
+support seccomp filter with minor fixup: ``SIGSYS`` support and seccomp return
+value checking. Then it must just add ``CONFIG_HAVE_ARCH_SECCOMP_FILTER``
+to its arch-specific Kconfig.
+
+
+
+Caveats
+=======
+
+The vDSO can cause some system calls to run entirely in userspace,
+leading to surprises when you run programs on different machines that
+fall back to real syscalls. To minimize these surprises on x86, make
+sure you test with
+``/sys/devices/system/clocksource/clocksource0/current_clocksource`` set to
+something like ``acpi_pm``.
+
+On x86-64, vsyscall emulation is enabled by default. (vsyscalls are
+legacy variants on vDSO calls.) Currently, emulated vsyscalls will
+honor seccomp, with a few oddities:
+
+- A return value of ``SECCOMP_RET_TRAP`` will set a ``si_call_addr`` pointing to
+ the vsyscall entry for the given call and not the address after the
+ 'syscall' instruction. Any code which wants to restart the call
+ should be aware that (a) a ret instruction has been emulated and (b)
+ trying to resume the syscall will again trigger the standard vsyscall
+ emulation security checks, making resuming the syscall mostly
+ pointless.
+
+- A return value of ``SECCOMP_RET_TRACE`` will signal the tracer as usual,
+ but the syscall may not be changed to another system call using the
+ orig_rax register. It may only be changed to -1 order to skip the
+ currently emulated call. Any other change MAY terminate the process.
+ The rip value seen by the tracer will be the syscall entry address;
+ this is different from normal behavior. The tracer MUST NOT modify
+ rip or rsp. (Do not rely on other changes terminating the process.
+ They might work. For example, on some kernels, choosing a syscall
+ that only exists in future kernels will be correctly emulated (by
+ returning ``-ENOSYS``).
+
+To detect this quirky behavior, check for ``addr & ~0x0C00 ==
+0xFFFFFFFFFF600000``. (For ``SECCOMP_RET_TRACE``, use rip. For
+``SECCOMP_RET_TRAP``, use ``siginfo->si_call_addr``.) Do not check any other
+condition: future kernels may improve vsyscall emulation and current
+kernels in vsyscall=native mode will behave differently, but the
+instructions at ``0xF...F600{0,4,8,C}00`` will not be system calls in these
+cases.
+
+Note that modern systems are unlikely to use vsyscalls at all -- they
+are a legacy feature and they are considerably slower than standard
+syscalls. New code will use the vDSO, and vDSO-issued system calls
+are indistinguishable from normal system calls.