diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/x86/sva.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/x86/sva.rst')
-rw-r--r-- | Documentation/x86/sva.rst | 286 |
1 files changed, 286 insertions, 0 deletions
diff --git a/Documentation/x86/sva.rst b/Documentation/x86/sva.rst new file mode 100644 index 000000000..2e9b8b0f9 --- /dev/null +++ b/Documentation/x86/sva.rst @@ -0,0 +1,286 @@ +.. SPDX-License-Identifier: GPL-2.0 + +=========================================== +Shared Virtual Addressing (SVA) with ENQCMD +=========================================== + +Background +========== + +Shared Virtual Addressing (SVA) allows the processor and device to use the +same virtual addresses avoiding the need for software to translate virtual +addresses to physical addresses. SVA is what PCIe calls Shared Virtual +Memory (SVM). + +In addition to the convenience of using application virtual addresses +by the device, it also doesn't require pinning pages for DMA. +PCIe Address Translation Services (ATS) along with Page Request Interface +(PRI) allow devices to function much the same way as the CPU handling +application page-faults. For more information please refer to the PCIe +specification Chapter 10: ATS Specification. + +Use of SVA requires IOMMU support in the platform. IOMMU is also +required to support the PCIe features ATS and PRI. ATS allows devices +to cache translations for virtual addresses. The IOMMU driver uses the +mmu_notifier() support to keep the device TLB cache and the CPU cache in +sync. When an ATS lookup fails for a virtual address, the device should +use the PRI in order to request the virtual address to be paged into the +CPU page tables. The device must use ATS again in order the fetch the +translation before use. + +Shared Hardware Workqueues +========================== + +Unlike Single Root I/O Virtualization (SR-IOV), Scalable IOV (SIOV) permits +the use of Shared Work Queues (SWQ) by both applications and Virtual +Machines (VM's). This allows better hardware utilization vs. hard +partitioning resources that could result in under utilization. In order to +allow the hardware to distinguish the context for which work is being +executed in the hardware by SWQ interface, SIOV uses Process Address Space +ID (PASID), which is a 20-bit number defined by the PCIe SIG. + +PASID value is encoded in all transactions from the device. This allows the +IOMMU to track I/O on a per-PASID granularity in addition to using the PCIe +Resource Identifier (RID) which is the Bus/Device/Function. + + +ENQCMD +====== + +ENQCMD is a new instruction on Intel platforms that atomically submits a +work descriptor to a device. The descriptor includes the operation to be +performed, virtual addresses of all parameters, virtual address of a completion +record, and the PASID (process address space ID) of the current process. + +ENQCMD works with non-posted semantics and carries a status back if the +command was accepted by hardware. This allows the submitter to know if the +submission needs to be retried or other device specific mechanisms to +implement fairness or ensure forward progress should be provided. + +ENQCMD is the glue that ensures applications can directly submit commands +to the hardware and also permits hardware to be aware of application context +to perform I/O operations via use of PASID. + +Process Address Space Tagging +============================= + +A new thread-scoped MSR (IA32_PASID) provides the connection between +user processes and the rest of the hardware. When an application first +accesses an SVA-capable device, this MSR is initialized with a newly +allocated PASID. The driver for the device calls an IOMMU-specific API +that sets up the routing for DMA and page-requests. + +For example, the Intel Data Streaming Accelerator (DSA) uses +iommu_sva_bind_device(), which will do the following: + +- Allocate the PASID, and program the process page-table (%cr3 register) in the + PASID context entries. +- Register for mmu_notifier() to track any page-table invalidations to keep + the device TLB in sync. For example, when a page-table entry is invalidated, + the IOMMU propagates the invalidation to the device TLB. This will force any + future access by the device to this virtual address to participate in + ATS. If the IOMMU responds with proper response that a page is not + present, the device would request the page to be paged in via the PCIe PRI + protocol before performing I/O. + +This MSR is managed with the XSAVE feature set as "supervisor state" to +ensure the MSR is updated during context switch. + +PASID Management +================ + +The kernel must allocate a PASID on behalf of each process which will use +ENQCMD and program it into the new MSR to communicate the process identity to +platform hardware. ENQCMD uses the PASID stored in this MSR to tag requests +from this process. When a user submits a work descriptor to a device using the +ENQCMD instruction, the PASID field in the descriptor is auto-filled with the +value from MSR_IA32_PASID. Requests for DMA from the device are also tagged +with the same PASID. The platform IOMMU uses the PASID in the transaction to +perform address translation. The IOMMU APIs setup the corresponding PASID +entry in IOMMU with the process address used by the CPU (e.g. %cr3 register in +x86). + +The MSR must be configured on each logical CPU before any application +thread can interact with a device. Threads that belong to the same +process share the same page tables, thus the same MSR value. + +PASID Life Cycle Management +=========================== + +PASID is initialized as INVALID_IOASID (-1) when a process is created. + +Only processes that access SVA-capable devices need to have a PASID +allocated. This allocation happens when a process opens/binds an SVA-capable +device but finds no PASID for this process. Subsequent binds of the same, or +other devices will share the same PASID. + +Although the PASID is allocated to the process by opening a device, +it is not active in any of the threads of that process. It's loaded to the +IA32_PASID MSR lazily when a thread tries to submit a work descriptor +to a device using the ENQCMD. + +That first access will trigger a #GP fault because the IA32_PASID MSR +has not been initialized with the PASID value assigned to the process +when the device was opened. The Linux #GP handler notes that a PASID has +been allocated for the process, and so initializes the IA32_PASID MSR +and returns so that the ENQCMD instruction is re-executed. + +On fork(2) or exec(2) the PASID is removed from the process as it no +longer has the same address space that it had when the device was opened. + +On clone(2) the new task shares the same address space, so will be +able to use the PASID allocated to the process. The IA32_PASID is not +preemptively initialized as the PASID value might not be allocated yet or +the kernel does not know whether this thread is going to access the device +and the cleared IA32_PASID MSR reduces context switch overhead by xstate +init optimization. Since #GP faults have to be handled on any threads that +were created before the PASID was assigned to the mm of the process, newly +created threads might as well be treated in a consistent way. + +Due to complexity of freeing the PASID and clearing all IA32_PASID MSRs in +all threads in unbind, free the PASID lazily only on mm exit. + +If a process does a close(2) of the device file descriptor and munmap(2) +of the device MMIO portal, then the driver will unbind the device. The +PASID is still marked VALID in the PASID_MSR for any threads in the +process that accessed the device. But this is harmless as without the +MMIO portal they cannot submit new work to the device. + +Relationships +============= + + * Each process has many threads, but only one PASID. + * Devices have a limited number (~10's to 1000's) of hardware workqueues. + The device driver manages allocating hardware workqueues. + * A single mmap() maps a single hardware workqueue as a "portal" and + each portal maps down to a single workqueue. + * For each device with which a process interacts, there must be + one or more mmap()'d portals. + * Many threads within a process can share a single portal to access + a single device. + * Multiple processes can separately mmap() the same portal, in + which case they still share one device hardware workqueue. + * The single process-wide PASID is used by all threads to interact + with all devices. There is not, for instance, a PASID for each + thread or each thread<->device pair. + +FAQ +=== + +* What is SVA/SVM? + +Shared Virtual Addressing (SVA) permits I/O hardware and the processor to +work in the same address space, i.e., to share it. Some call it Shared +Virtual Memory (SVM), but Linux community wanted to avoid confusing it with +POSIX Shared Memory and Secure Virtual Machines which were terms already in +circulation. + +* What is a PASID? + +A Process Address Space ID (PASID) is a PCIe-defined Transaction Layer Packet +(TLP) prefix. A PASID is a 20-bit number allocated and managed by the OS. +PASID is included in all transactions between the platform and the device. + +* How are shared workqueues different? + +Traditionally, in order for userspace applications to interact with hardware, +there is a separate hardware instance required per process. For example, +consider doorbells as a mechanism of informing hardware about work to process. +Each doorbell is required to be spaced 4k (or page-size) apart for process +isolation. This requires hardware to provision that space and reserve it in +MMIO. This doesn't scale as the number of threads becomes quite large. The +hardware also manages the queue depth for Shared Work Queues (SWQ), and +consumers don't need to track queue depth. If there is no space to accept +a command, the device will return an error indicating retry. + +A user should check Deferrable Memory Write (DMWr) capability on the device +and only submits ENQCMD when the device supports it. In the new DMWr PCIe +terminology, devices need to support DMWr completer capability. In addition, +it requires all switch ports to support DMWr routing and must be enabled by +the PCIe subsystem, much like how PCIe atomic operations are managed for +instance. + +SWQ allows hardware to provision just a single address in the device. When +used with ENQCMD to submit work, the device can distinguish the process +submitting the work since it will include the PASID assigned to that +process. This helps the device scale to a large number of processes. + +* Is this the same as a user space device driver? + +Communicating with the device via the shared workqueue is much simpler +than a full blown user space driver. The kernel driver does all the +initialization of the hardware. User space only needs to worry about +submitting work and processing completions. + +* Is this the same as SR-IOV? + +Single Root I/O Virtualization (SR-IOV) focuses on providing independent +hardware interfaces for virtualizing hardware. Hence, it's required to be +almost fully functional interface to software supporting the traditional +BARs, space for interrupts via MSI-X, its own register layout. +Virtual Functions (VFs) are assisted by the Physical Function (PF) +driver. + +Scalable I/O Virtualization builds on the PASID concept to create device +instances for virtualization. SIOV requires host software to assist in +creating virtual devices; each virtual device is represented by a PASID +along with the bus/device/function of the device. This allows device +hardware to optimize device resource creation and can grow dynamically on +demand. SR-IOV creation and management is very static in nature. Consult +references below for more details. + +* Why not just create a virtual function for each app? + +Creating PCIe SR-IOV type Virtual Functions (VF) is expensive. VFs require +duplicated hardware for PCI config space and interrupts such as MSI-X. +Resources such as interrupts have to be hard partitioned between VFs at +creation time, and cannot scale dynamically on demand. The VFs are not +completely independent from the Physical Function (PF). Most VFs require +some communication and assistance from the PF driver. SIOV, in contrast, +creates a software-defined device where all the configuration and control +aspects are mediated via the slow path. The work submission and completion +happen without any mediation. + +* Does this support virtualization? + +ENQCMD can be used from within a guest VM. In these cases, the VMM helps +with setting up a translation table to translate from Guest PASID to Host +PASID. Please consult the ENQCMD instruction set reference for more +details. + +* Does memory need to be pinned? + +When devices support SVA along with platform hardware such as IOMMU +supporting such devices, there is no need to pin memory for DMA purposes. +Devices that support SVA also support other PCIe features that remove the +pinning requirement for memory. + +Device TLB support - Device requests the IOMMU to lookup an address before +use via Address Translation Service (ATS) requests. If the mapping exists +but there is no page allocated by the OS, IOMMU hardware returns that no +mapping exists. + +Device requests the virtual address to be mapped via Page Request +Interface (PRI). Once the OS has successfully completed the mapping, it +returns the response back to the device. The device requests again for +a translation and continues. + +IOMMU works with the OS in managing consistency of page-tables with the +device. When removing pages, it interacts with the device to remove any +device TLB entry that might have been cached before removing the mappings from +the OS. + +References +========== + +VT-D: +https://01.org/blogs/ashokraj/2018/recent-enhancements-intel-virtualization-technology-directed-i/o-intel-vt-d + +SIOV: +https://01.org/blogs/2019/assignable-interfaces-intel-scalable-i/o-virtualization-linux + +ENQCMD in ISE: +https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf + +DSA spec: +https://software.intel.com/sites/default/files/341204-intel-data-streaming-accelerator-spec.pdf |