diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /arch/arm/crypto/chacha-neon-core.S | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'arch/arm/crypto/chacha-neon-core.S')
-rw-r--r-- | arch/arm/crypto/chacha-neon-core.S | 643 |
1 files changed, 643 insertions, 0 deletions
diff --git a/arch/arm/crypto/chacha-neon-core.S b/arch/arm/crypto/chacha-neon-core.S new file mode 100644 index 000000000..13d12f672 --- /dev/null +++ b/arch/arm/crypto/chacha-neon-core.S @@ -0,0 +1,643 @@ +/* + * ChaCha/XChaCha NEON helper functions + * + * Copyright (C) 2016 Linaro, Ltd. <ard.biesheuvel@linaro.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Based on: + * ChaCha20 256-bit cipher algorithm, RFC7539, x64 SSE3 functions + * + * Copyright (C) 2015 Martin Willi + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + */ + + /* + * NEON doesn't have a rotate instruction. The alternatives are, more or less: + * + * (a) vshl.u32 + vsri.u32 (needs temporary register) + * (b) vshl.u32 + vshr.u32 + vorr (needs temporary register) + * (c) vrev32.16 (16-bit rotations only) + * (d) vtbl.8 + vtbl.8 (multiple of 8 bits rotations only, + * needs index vector) + * + * ChaCha has 16, 12, 8, and 7-bit rotations. For the 12 and 7-bit rotations, + * the only choices are (a) and (b). We use (a) since it takes two-thirds the + * cycles of (b) on both Cortex-A7 and Cortex-A53. + * + * For the 16-bit rotation, we use vrev32.16 since it's consistently fastest + * and doesn't need a temporary register. + * + * For the 8-bit rotation, we use vtbl.8 + vtbl.8. On Cortex-A7, this sequence + * is twice as fast as (a), even when doing (a) on multiple registers + * simultaneously to eliminate the stall between vshl and vsri. Also, it + * parallelizes better when temporary registers are scarce. + * + * A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed as + * (a), so the need to load the rotation table actually makes the vtbl method + * slightly slower overall on that CPU (~1.3% slower ChaCha20). Still, it + * seems to be a good compromise to get a more significant speed boost on some + * CPUs, e.g. ~4.8% faster ChaCha20 on Cortex-A7. + */ + +#include <linux/linkage.h> +#include <asm/cache.h> + + .text + .fpu neon + .align 5 + +/* + * chacha_permute - permute one block + * + * Permute one 64-byte block where the state matrix is stored in the four NEON + * registers q0-q3. It performs matrix operations on four words in parallel, + * but requires shuffling to rearrange the words after each round. + * + * The round count is given in r3. + * + * Clobbers: r3, ip, q4-q5 + */ +chacha_permute: + + adr ip, .Lrol8_table + vld1.8 {d10}, [ip, :64] + +.Ldoubleround: + // x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vadd.i32 q0, q0, q1 + veor q3, q3, q0 + vrev32.16 q3, q3 + + // x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vadd.i32 q2, q2, q3 + veor q4, q1, q2 + vshl.u32 q1, q4, #12 + vsri.u32 q1, q4, #20 + + // x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vadd.i32 q0, q0, q1 + veor q3, q3, q0 + vtbl.8 d6, {d6}, d10 + vtbl.8 d7, {d7}, d10 + + // x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vadd.i32 q2, q2, q3 + veor q4, q1, q2 + vshl.u32 q1, q4, #7 + vsri.u32 q1, q4, #25 + + // x1 = shuffle32(x1, MASK(0, 3, 2, 1)) + vext.8 q1, q1, q1, #4 + // x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vext.8 q2, q2, q2, #8 + // x3 = shuffle32(x3, MASK(2, 1, 0, 3)) + vext.8 q3, q3, q3, #12 + + // x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vadd.i32 q0, q0, q1 + veor q3, q3, q0 + vrev32.16 q3, q3 + + // x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vadd.i32 q2, q2, q3 + veor q4, q1, q2 + vshl.u32 q1, q4, #12 + vsri.u32 q1, q4, #20 + + // x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vadd.i32 q0, q0, q1 + veor q3, q3, q0 + vtbl.8 d6, {d6}, d10 + vtbl.8 d7, {d7}, d10 + + // x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vadd.i32 q2, q2, q3 + veor q4, q1, q2 + vshl.u32 q1, q4, #7 + vsri.u32 q1, q4, #25 + + // x1 = shuffle32(x1, MASK(2, 1, 0, 3)) + vext.8 q1, q1, q1, #12 + // x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vext.8 q2, q2, q2, #8 + // x3 = shuffle32(x3, MASK(0, 3, 2, 1)) + vext.8 q3, q3, q3, #4 + + subs r3, r3, #2 + bne .Ldoubleround + + bx lr +ENDPROC(chacha_permute) + +ENTRY(chacha_block_xor_neon) + // r0: Input state matrix, s + // r1: 1 data block output, o + // r2: 1 data block input, i + // r3: nrounds + push {lr} + + // x0..3 = s0..3 + add ip, r0, #0x20 + vld1.32 {q0-q1}, [r0] + vld1.32 {q2-q3}, [ip] + + vmov q8, q0 + vmov q9, q1 + vmov q10, q2 + vmov q11, q3 + + bl chacha_permute + + add ip, r2, #0x20 + vld1.8 {q4-q5}, [r2] + vld1.8 {q6-q7}, [ip] + + // o0 = i0 ^ (x0 + s0) + vadd.i32 q0, q0, q8 + veor q0, q0, q4 + + // o1 = i1 ^ (x1 + s1) + vadd.i32 q1, q1, q9 + veor q1, q1, q5 + + // o2 = i2 ^ (x2 + s2) + vadd.i32 q2, q2, q10 + veor q2, q2, q6 + + // o3 = i3 ^ (x3 + s3) + vadd.i32 q3, q3, q11 + veor q3, q3, q7 + + add ip, r1, #0x20 + vst1.8 {q0-q1}, [r1] + vst1.8 {q2-q3}, [ip] + + pop {pc} +ENDPROC(chacha_block_xor_neon) + +ENTRY(hchacha_block_neon) + // r0: Input state matrix, s + // r1: output (8 32-bit words) + // r2: nrounds + push {lr} + + vld1.32 {q0-q1}, [r0]! + vld1.32 {q2-q3}, [r0] + + mov r3, r2 + bl chacha_permute + + vst1.32 {q0}, [r1]! + vst1.32 {q3}, [r1] + + pop {pc} +ENDPROC(hchacha_block_neon) + + .align 4 +.Lctrinc: .word 0, 1, 2, 3 +.Lrol8_table: .byte 3, 0, 1, 2, 7, 4, 5, 6 + + .align 5 +ENTRY(chacha_4block_xor_neon) + push {r4, lr} + mov r4, sp // preserve the stack pointer + sub ip, sp, #0x20 // allocate a 32 byte buffer + bic ip, ip, #0x1f // aligned to 32 bytes + mov sp, ip + + // r0: Input state matrix, s + // r1: 4 data blocks output, o + // r2: 4 data blocks input, i + // r3: nrounds + + // + // This function encrypts four consecutive ChaCha blocks by loading + // the state matrix in NEON registers four times. The algorithm performs + // each operation on the corresponding word of each state matrix, hence + // requires no word shuffling. The words are re-interleaved before the + // final addition of the original state and the XORing step. + // + + // x0..15[0-3] = s0..15[0-3] + add ip, r0, #0x20 + vld1.32 {q0-q1}, [r0] + vld1.32 {q2-q3}, [ip] + + adr lr, .Lctrinc + vdup.32 q15, d7[1] + vdup.32 q14, d7[0] + vld1.32 {q4}, [lr, :128] + vdup.32 q13, d6[1] + vdup.32 q12, d6[0] + vdup.32 q11, d5[1] + vdup.32 q10, d5[0] + vadd.u32 q12, q12, q4 // x12 += counter values 0-3 + vdup.32 q9, d4[1] + vdup.32 q8, d4[0] + vdup.32 q7, d3[1] + vdup.32 q6, d3[0] + vdup.32 q5, d2[1] + vdup.32 q4, d2[0] + vdup.32 q3, d1[1] + vdup.32 q2, d1[0] + vdup.32 q1, d0[1] + vdup.32 q0, d0[0] + + adr ip, .Lrol8_table + b 1f + +.Ldoubleround4: + vld1.32 {q8-q9}, [sp, :256] +1: + // x0 += x4, x12 = rotl32(x12 ^ x0, 16) + // x1 += x5, x13 = rotl32(x13 ^ x1, 16) + // x2 += x6, x14 = rotl32(x14 ^ x2, 16) + // x3 += x7, x15 = rotl32(x15 ^ x3, 16) + vadd.i32 q0, q0, q4 + vadd.i32 q1, q1, q5 + vadd.i32 q2, q2, q6 + vadd.i32 q3, q3, q7 + + veor q12, q12, q0 + veor q13, q13, q1 + veor q14, q14, q2 + veor q15, q15, q3 + + vrev32.16 q12, q12 + vrev32.16 q13, q13 + vrev32.16 q14, q14 + vrev32.16 q15, q15 + + // x8 += x12, x4 = rotl32(x4 ^ x8, 12) + // x9 += x13, x5 = rotl32(x5 ^ x9, 12) + // x10 += x14, x6 = rotl32(x6 ^ x10, 12) + // x11 += x15, x7 = rotl32(x7 ^ x11, 12) + vadd.i32 q8, q8, q12 + vadd.i32 q9, q9, q13 + vadd.i32 q10, q10, q14 + vadd.i32 q11, q11, q15 + + vst1.32 {q8-q9}, [sp, :256] + + veor q8, q4, q8 + veor q9, q5, q9 + vshl.u32 q4, q8, #12 + vshl.u32 q5, q9, #12 + vsri.u32 q4, q8, #20 + vsri.u32 q5, q9, #20 + + veor q8, q6, q10 + veor q9, q7, q11 + vshl.u32 q6, q8, #12 + vshl.u32 q7, q9, #12 + vsri.u32 q6, q8, #20 + vsri.u32 q7, q9, #20 + + // x0 += x4, x12 = rotl32(x12 ^ x0, 8) + // x1 += x5, x13 = rotl32(x13 ^ x1, 8) + // x2 += x6, x14 = rotl32(x14 ^ x2, 8) + // x3 += x7, x15 = rotl32(x15 ^ x3, 8) + vld1.8 {d16}, [ip, :64] + vadd.i32 q0, q0, q4 + vadd.i32 q1, q1, q5 + vadd.i32 q2, q2, q6 + vadd.i32 q3, q3, q7 + + veor q12, q12, q0 + veor q13, q13, q1 + veor q14, q14, q2 + veor q15, q15, q3 + + vtbl.8 d24, {d24}, d16 + vtbl.8 d25, {d25}, d16 + vtbl.8 d26, {d26}, d16 + vtbl.8 d27, {d27}, d16 + vtbl.8 d28, {d28}, d16 + vtbl.8 d29, {d29}, d16 + vtbl.8 d30, {d30}, d16 + vtbl.8 d31, {d31}, d16 + + vld1.32 {q8-q9}, [sp, :256] + + // x8 += x12, x4 = rotl32(x4 ^ x8, 7) + // x9 += x13, x5 = rotl32(x5 ^ x9, 7) + // x10 += x14, x6 = rotl32(x6 ^ x10, 7) + // x11 += x15, x7 = rotl32(x7 ^ x11, 7) + vadd.i32 q8, q8, q12 + vadd.i32 q9, q9, q13 + vadd.i32 q10, q10, q14 + vadd.i32 q11, q11, q15 + + vst1.32 {q8-q9}, [sp, :256] + + veor q8, q4, q8 + veor q9, q5, q9 + vshl.u32 q4, q8, #7 + vshl.u32 q5, q9, #7 + vsri.u32 q4, q8, #25 + vsri.u32 q5, q9, #25 + + veor q8, q6, q10 + veor q9, q7, q11 + vshl.u32 q6, q8, #7 + vshl.u32 q7, q9, #7 + vsri.u32 q6, q8, #25 + vsri.u32 q7, q9, #25 + + vld1.32 {q8-q9}, [sp, :256] + + // x0 += x5, x15 = rotl32(x15 ^ x0, 16) + // x1 += x6, x12 = rotl32(x12 ^ x1, 16) + // x2 += x7, x13 = rotl32(x13 ^ x2, 16) + // x3 += x4, x14 = rotl32(x14 ^ x3, 16) + vadd.i32 q0, q0, q5 + vadd.i32 q1, q1, q6 + vadd.i32 q2, q2, q7 + vadd.i32 q3, q3, q4 + + veor q15, q15, q0 + veor q12, q12, q1 + veor q13, q13, q2 + veor q14, q14, q3 + + vrev32.16 q15, q15 + vrev32.16 q12, q12 + vrev32.16 q13, q13 + vrev32.16 q14, q14 + + // x10 += x15, x5 = rotl32(x5 ^ x10, 12) + // x11 += x12, x6 = rotl32(x6 ^ x11, 12) + // x8 += x13, x7 = rotl32(x7 ^ x8, 12) + // x9 += x14, x4 = rotl32(x4 ^ x9, 12) + vadd.i32 q10, q10, q15 + vadd.i32 q11, q11, q12 + vadd.i32 q8, q8, q13 + vadd.i32 q9, q9, q14 + + vst1.32 {q8-q9}, [sp, :256] + + veor q8, q7, q8 + veor q9, q4, q9 + vshl.u32 q7, q8, #12 + vshl.u32 q4, q9, #12 + vsri.u32 q7, q8, #20 + vsri.u32 q4, q9, #20 + + veor q8, q5, q10 + veor q9, q6, q11 + vshl.u32 q5, q8, #12 + vshl.u32 q6, q9, #12 + vsri.u32 q5, q8, #20 + vsri.u32 q6, q9, #20 + + // x0 += x5, x15 = rotl32(x15 ^ x0, 8) + // x1 += x6, x12 = rotl32(x12 ^ x1, 8) + // x2 += x7, x13 = rotl32(x13 ^ x2, 8) + // x3 += x4, x14 = rotl32(x14 ^ x3, 8) + vld1.8 {d16}, [ip, :64] + vadd.i32 q0, q0, q5 + vadd.i32 q1, q1, q6 + vadd.i32 q2, q2, q7 + vadd.i32 q3, q3, q4 + + veor q15, q15, q0 + veor q12, q12, q1 + veor q13, q13, q2 + veor q14, q14, q3 + + vtbl.8 d30, {d30}, d16 + vtbl.8 d31, {d31}, d16 + vtbl.8 d24, {d24}, d16 + vtbl.8 d25, {d25}, d16 + vtbl.8 d26, {d26}, d16 + vtbl.8 d27, {d27}, d16 + vtbl.8 d28, {d28}, d16 + vtbl.8 d29, {d29}, d16 + + vld1.32 {q8-q9}, [sp, :256] + + // x10 += x15, x5 = rotl32(x5 ^ x10, 7) + // x11 += x12, x6 = rotl32(x6 ^ x11, 7) + // x8 += x13, x7 = rotl32(x7 ^ x8, 7) + // x9 += x14, x4 = rotl32(x4 ^ x9, 7) + vadd.i32 q10, q10, q15 + vadd.i32 q11, q11, q12 + vadd.i32 q8, q8, q13 + vadd.i32 q9, q9, q14 + + vst1.32 {q8-q9}, [sp, :256] + + veor q8, q7, q8 + veor q9, q4, q9 + vshl.u32 q7, q8, #7 + vshl.u32 q4, q9, #7 + vsri.u32 q7, q8, #25 + vsri.u32 q4, q9, #25 + + veor q8, q5, q10 + veor q9, q6, q11 + vshl.u32 q5, q8, #7 + vshl.u32 q6, q9, #7 + vsri.u32 q5, q8, #25 + vsri.u32 q6, q9, #25 + + subs r3, r3, #2 + bne .Ldoubleround4 + + // x0..7[0-3] are in q0-q7, x10..15[0-3] are in q10-q15. + // x8..9[0-3] are on the stack. + + // Re-interleave the words in the first two rows of each block (x0..7). + // Also add the counter values 0-3 to x12[0-3]. + vld1.32 {q8}, [lr, :128] // load counter values 0-3 + vzip.32 q0, q1 // => (0 1 0 1) (0 1 0 1) + vzip.32 q2, q3 // => (2 3 2 3) (2 3 2 3) + vzip.32 q4, q5 // => (4 5 4 5) (4 5 4 5) + vzip.32 q6, q7 // => (6 7 6 7) (6 7 6 7) + vadd.u32 q12, q8 // x12 += counter values 0-3 + vswp d1, d4 + vswp d3, d6 + vld1.32 {q8-q9}, [r0]! // load s0..7 + vswp d9, d12 + vswp d11, d14 + + // Swap q1 and q4 so that we'll free up consecutive registers (q0-q1) + // after XORing the first 32 bytes. + vswp q1, q4 + + // First two rows of each block are (q0 q1) (q2 q6) (q4 q5) (q3 q7) + + // x0..3[0-3] += s0..3[0-3] (add orig state to 1st row of each block) + vadd.u32 q0, q0, q8 + vadd.u32 q2, q2, q8 + vadd.u32 q4, q4, q8 + vadd.u32 q3, q3, q8 + + // x4..7[0-3] += s4..7[0-3] (add orig state to 2nd row of each block) + vadd.u32 q1, q1, q9 + vadd.u32 q6, q6, q9 + vadd.u32 q5, q5, q9 + vadd.u32 q7, q7, q9 + + // XOR first 32 bytes using keystream from first two rows of first block + vld1.8 {q8-q9}, [r2]! + veor q8, q8, q0 + veor q9, q9, q1 + vst1.8 {q8-q9}, [r1]! + + // Re-interleave the words in the last two rows of each block (x8..15). + vld1.32 {q8-q9}, [sp, :256] + mov sp, r4 // restore original stack pointer + ldr r4, [r4, #8] // load number of bytes + vzip.32 q12, q13 // => (12 13 12 13) (12 13 12 13) + vzip.32 q14, q15 // => (14 15 14 15) (14 15 14 15) + vzip.32 q8, q9 // => (8 9 8 9) (8 9 8 9) + vzip.32 q10, q11 // => (10 11 10 11) (10 11 10 11) + vld1.32 {q0-q1}, [r0] // load s8..15 + vswp d25, d28 + vswp d27, d30 + vswp d17, d20 + vswp d19, d22 + + // Last two rows of each block are (q8 q12) (q10 q14) (q9 q13) (q11 q15) + + // x8..11[0-3] += s8..11[0-3] (add orig state to 3rd row of each block) + vadd.u32 q8, q8, q0 + vadd.u32 q10, q10, q0 + vadd.u32 q9, q9, q0 + vadd.u32 q11, q11, q0 + + // x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each block) + vadd.u32 q12, q12, q1 + vadd.u32 q14, q14, q1 + vadd.u32 q13, q13, q1 + vadd.u32 q15, q15, q1 + + // XOR the rest of the data with the keystream + + vld1.8 {q0-q1}, [r2]! + subs r4, r4, #96 + veor q0, q0, q8 + veor q1, q1, q12 + ble .Lle96 + vst1.8 {q0-q1}, [r1]! + + vld1.8 {q0-q1}, [r2]! + subs r4, r4, #32 + veor q0, q0, q2 + veor q1, q1, q6 + ble .Lle128 + vst1.8 {q0-q1}, [r1]! + + vld1.8 {q0-q1}, [r2]! + subs r4, r4, #32 + veor q0, q0, q10 + veor q1, q1, q14 + ble .Lle160 + vst1.8 {q0-q1}, [r1]! + + vld1.8 {q0-q1}, [r2]! + subs r4, r4, #32 + veor q0, q0, q4 + veor q1, q1, q5 + ble .Lle192 + vst1.8 {q0-q1}, [r1]! + + vld1.8 {q0-q1}, [r2]! + subs r4, r4, #32 + veor q0, q0, q9 + veor q1, q1, q13 + ble .Lle224 + vst1.8 {q0-q1}, [r1]! + + vld1.8 {q0-q1}, [r2]! + subs r4, r4, #32 + veor q0, q0, q3 + veor q1, q1, q7 + blt .Llt256 +.Lout: + vst1.8 {q0-q1}, [r1]! + + vld1.8 {q0-q1}, [r2] + veor q0, q0, q11 + veor q1, q1, q15 + vst1.8 {q0-q1}, [r1] + + pop {r4, pc} + +.Lle192: + vmov q4, q9 + vmov q5, q13 + +.Lle160: + // nothing to do + +.Lfinalblock: + // Process the final block if processing less than 4 full blocks. + // Entered with 32 bytes of ChaCha cipher stream in q4-q5, and the + // previous 32 byte output block that still needs to be written at + // [r1] in q0-q1. + beq .Lfullblock + +.Lpartialblock: + adr lr, .Lpermute + 32 + add r2, r2, r4 + add lr, lr, r4 + add r4, r4, r1 + + vld1.8 {q2-q3}, [lr] + vld1.8 {q6-q7}, [r2] + + add r4, r4, #32 + + vtbl.8 d4, {q4-q5}, d4 + vtbl.8 d5, {q4-q5}, d5 + vtbl.8 d6, {q4-q5}, d6 + vtbl.8 d7, {q4-q5}, d7 + + veor q6, q6, q2 + veor q7, q7, q3 + + vst1.8 {q6-q7}, [r4] // overlapping stores + vst1.8 {q0-q1}, [r1] + pop {r4, pc} + +.Lfullblock: + vmov q11, q4 + vmov q15, q5 + b .Lout +.Lle96: + vmov q4, q2 + vmov q5, q6 + b .Lfinalblock +.Lle128: + vmov q4, q10 + vmov q5, q14 + b .Lfinalblock +.Lle224: + vmov q4, q3 + vmov q5, q7 + b .Lfinalblock +.Llt256: + vmov q4, q11 + vmov q5, q15 + b .Lpartialblock +ENDPROC(chacha_4block_xor_neon) + + .align L1_CACHE_SHIFT +.Lpermute: + .byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 + .byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f + .byte 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 + .byte 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f + .byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 + .byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f + .byte 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 + .byte 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f |