aboutsummaryrefslogtreecommitdiff
path: root/arch/arm/vfp/vfphw.S
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /arch/arm/vfp/vfphw.S
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'arch/arm/vfp/vfphw.S')
-rw-r--r--arch/arm/vfp/vfphw.S326
1 files changed, 326 insertions, 0 deletions
diff --git a/arch/arm/vfp/vfphw.S b/arch/arm/vfp/vfphw.S
new file mode 100644
index 000000000..26c4f61ec
--- /dev/null
+++ b/arch/arm/vfp/vfphw.S
@@ -0,0 +1,326 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * linux/arch/arm/vfp/vfphw.S
+ *
+ * Copyright (C) 2004 ARM Limited.
+ * Written by Deep Blue Solutions Limited.
+ *
+ * This code is called from the kernel's undefined instruction trap.
+ * r9 holds the return address for successful handling.
+ * lr holds the return address for unrecognised instructions.
+ * r10 points at the start of the private FP workspace in the thread structure
+ * sp points to a struct pt_regs (as defined in include/asm/proc/ptrace.h)
+ */
+#include <linux/init.h>
+#include <linux/linkage.h>
+#include <asm/thread_info.h>
+#include <asm/vfpmacros.h>
+#include <linux/kern_levels.h>
+#include <asm/assembler.h>
+#include <asm/asm-offsets.h>
+
+ .macro DBGSTR, str
+#ifdef DEBUG
+ stmfd sp!, {r0-r3, ip, lr}
+ ldr r0, =1f
+ bl _printk
+ ldmfd sp!, {r0-r3, ip, lr}
+
+ .pushsection .rodata, "a"
+1: .ascii KERN_DEBUG "VFP: \str\n"
+ .byte 0
+ .previous
+#endif
+ .endm
+
+ .macro DBGSTR1, str, arg
+#ifdef DEBUG
+ stmfd sp!, {r0-r3, ip, lr}
+ mov r1, \arg
+ ldr r0, =1f
+ bl _printk
+ ldmfd sp!, {r0-r3, ip, lr}
+
+ .pushsection .rodata, "a"
+1: .ascii KERN_DEBUG "VFP: \str\n"
+ .byte 0
+ .previous
+#endif
+ .endm
+
+ .macro DBGSTR3, str, arg1, arg2, arg3
+#ifdef DEBUG
+ stmfd sp!, {r0-r3, ip, lr}
+ mov r3, \arg3
+ mov r2, \arg2
+ mov r1, \arg1
+ ldr r0, =1f
+ bl _printk
+ ldmfd sp!, {r0-r3, ip, lr}
+
+ .pushsection .rodata, "a"
+1: .ascii KERN_DEBUG "VFP: \str\n"
+ .byte 0
+ .previous
+#endif
+ .endm
+
+
+@ VFP hardware support entry point.
+@
+@ r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
+@ r2 = PC value to resume execution after successful emulation
+@ r9 = normal "successful" return address
+@ r10 = vfp_state union
+@ r11 = CPU number
+@ lr = unrecognised instruction return address
+@ IRQs enabled.
+ENTRY(vfp_support_entry)
+ DBGSTR3 "instr %08x pc %08x state %p", r0, r2, r10
+
+ .fpu vfpv2
+ VFPFMRX r1, FPEXC @ Is the VFP enabled?
+ DBGSTR1 "fpexc %08x", r1
+ tst r1, #FPEXC_EN
+ bne look_for_VFP_exceptions @ VFP is already enabled
+
+ DBGSTR1 "enable %x", r10
+ ldr r3, vfp_current_hw_state_address
+ orr r1, r1, #FPEXC_EN @ user FPEXC has the enable bit set
+ ldr r4, [r3, r11, lsl #2] @ vfp_current_hw_state pointer
+ bic r5, r1, #FPEXC_EX @ make sure exceptions are disabled
+ cmp r4, r10 @ this thread owns the hw context?
+#ifndef CONFIG_SMP
+ @ For UP, checking that this thread owns the hw context is
+ @ sufficient to determine that the hardware state is valid.
+ beq vfp_hw_state_valid
+
+ @ On UP, we lazily save the VFP context. As a different
+ @ thread wants ownership of the VFP hardware, save the old
+ @ state if there was a previous (valid) owner.
+
+ VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
+ @ exceptions, so we can get at the
+ @ rest of it
+
+ DBGSTR1 "save old state %p", r4
+ cmp r4, #0 @ if the vfp_current_hw_state is NULL
+ beq vfp_reload_hw @ then the hw state needs reloading
+ VFPFSTMIA r4, r5 @ save the working registers
+ VFPFMRX r5, FPSCR @ current status
+#ifndef CONFIG_CPU_FEROCEON
+ tst r1, #FPEXC_EX @ is there additional state to save?
+ beq 1f
+ VFPFMRX r6, FPINST @ FPINST (only if FPEXC.EX is set)
+ tst r1, #FPEXC_FP2V @ is there an FPINST2 to read?
+ beq 1f
+ VFPFMRX r8, FPINST2 @ FPINST2 if needed (and present)
+1:
+#endif
+ stmia r4, {r1, r5, r6, r8} @ save FPEXC, FPSCR, FPINST, FPINST2
+vfp_reload_hw:
+
+#else
+ @ For SMP, if this thread does not own the hw context, then we
+ @ need to reload it. No need to save the old state as on SMP,
+ @ we always save the state when we switch away from a thread.
+ bne vfp_reload_hw
+
+ @ This thread has ownership of the current hardware context.
+ @ However, it may have been migrated to another CPU, in which
+ @ case the saved state is newer than the hardware context.
+ @ Check this by looking at the CPU number which the state was
+ @ last loaded onto.
+ ldr ip, [r10, #VFP_CPU]
+ teq ip, r11
+ beq vfp_hw_state_valid
+
+vfp_reload_hw:
+ @ We're loading this threads state into the VFP hardware. Update
+ @ the CPU number which contains the most up to date VFP context.
+ str r11, [r10, #VFP_CPU]
+
+ VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
+ @ exceptions, so we can get at the
+ @ rest of it
+#endif
+
+ DBGSTR1 "load state %p", r10
+ str r10, [r3, r11, lsl #2] @ update the vfp_current_hw_state pointer
+ @ Load the saved state back into the VFP
+ VFPFLDMIA r10, r5 @ reload the working registers while
+ @ FPEXC is in a safe state
+ ldmia r10, {r1, r5, r6, r8} @ load FPEXC, FPSCR, FPINST, FPINST2
+#ifndef CONFIG_CPU_FEROCEON
+ tst r1, #FPEXC_EX @ is there additional state to restore?
+ beq 1f
+ VFPFMXR FPINST, r6 @ restore FPINST (only if FPEXC.EX is set)
+ tst r1, #FPEXC_FP2V @ is there an FPINST2 to write?
+ beq 1f
+ VFPFMXR FPINST2, r8 @ FPINST2 if needed (and present)
+1:
+#endif
+ VFPFMXR FPSCR, r5 @ restore status
+
+@ The context stored in the VFP hardware is up to date with this thread
+vfp_hw_state_valid:
+ tst r1, #FPEXC_EX
+ bne process_exception @ might as well handle the pending
+ @ exception before retrying branch
+ @ out before setting an FPEXC that
+ @ stops us reading stuff
+ VFPFMXR FPEXC, r1 @ Restore FPEXC last
+ sub r2, r2, #4 @ Retry current instruction - if Thumb
+ str r2, [sp, #S_PC] @ mode it's two 16-bit instructions,
+ @ else it's one 32-bit instruction, so
+ @ always subtract 4 from the following
+ @ instruction address.
+ local_bh_enable_ti r10, r4
+ ret r9 @ we think we have handled things
+
+
+look_for_VFP_exceptions:
+ @ Check for synchronous or asynchronous exception
+ tst r1, #FPEXC_EX | FPEXC_DEX
+ bne process_exception
+ @ On some implementations of the VFP subarch 1, setting FPSCR.IXE
+ @ causes all the CDP instructions to be bounced synchronously without
+ @ setting the FPEXC.EX bit
+ VFPFMRX r5, FPSCR
+ tst r5, #FPSCR_IXE
+ bne process_exception
+
+ tst r5, #FPSCR_LENGTH_MASK
+ beq skip
+ orr r1, r1, #FPEXC_DEX
+ b process_exception
+skip:
+
+ @ Fall into hand on to next handler - appropriate coproc instr
+ @ not recognised by VFP
+
+ DBGSTR "not VFP"
+ local_bh_enable_ti r10, r4
+ ret lr
+
+process_exception:
+ DBGSTR "bounce"
+ mov r2, sp @ nothing stacked - regdump is at TOS
+ mov lr, r9 @ setup for a return to the user code.
+
+ @ Now call the C code to package up the bounce to the support code
+ @ r0 holds the trigger instruction
+ @ r1 holds the FPEXC value
+ @ r2 pointer to register dump
+ b VFP_bounce @ we have handled this - the support
+ @ code will raise an exception if
+ @ required. If not, the user code will
+ @ retry the faulted instruction
+ENDPROC(vfp_support_entry)
+
+ENTRY(vfp_save_state)
+ @ Save the current VFP state
+ @ r0 - save location
+ @ r1 - FPEXC
+ DBGSTR1 "save VFP state %p", r0
+ VFPFSTMIA r0, r2 @ save the working registers
+ VFPFMRX r2, FPSCR @ current status
+ tst r1, #FPEXC_EX @ is there additional state to save?
+ beq 1f
+ VFPFMRX r3, FPINST @ FPINST (only if FPEXC.EX is set)
+ tst r1, #FPEXC_FP2V @ is there an FPINST2 to read?
+ beq 1f
+ VFPFMRX r12, FPINST2 @ FPINST2 if needed (and present)
+1:
+ stmia r0, {r1, r2, r3, r12} @ save FPEXC, FPSCR, FPINST, FPINST2
+ ret lr
+ENDPROC(vfp_save_state)
+
+ .align
+vfp_current_hw_state_address:
+ .word vfp_current_hw_state
+
+ .macro tbl_branch, base, tmp, shift
+#ifdef CONFIG_THUMB2_KERNEL
+ adr \tmp, 1f
+ add \tmp, \tmp, \base, lsl \shift
+ ret \tmp
+#else
+ add pc, pc, \base, lsl \shift
+ mov r0, r0
+#endif
+1:
+ .endm
+
+ENTRY(vfp_get_float)
+ tbl_branch r0, r3, #3
+ .fpu vfpv2
+ .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
+1: vmov r0, s\dr
+ ret lr
+ .org 1b + 8
+ .endr
+ .irp dr,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+1: vmov r0, s\dr
+ ret lr
+ .org 1b + 8
+ .endr
+ENDPROC(vfp_get_float)
+
+ENTRY(vfp_put_float)
+ tbl_branch r1, r3, #3
+ .fpu vfpv2
+ .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
+1: vmov s\dr, r0
+ ret lr
+ .org 1b + 8
+ .endr
+ .irp dr,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+1: vmov s\dr, r0
+ ret lr
+ .org 1b + 8
+ .endr
+ENDPROC(vfp_put_float)
+
+ENTRY(vfp_get_double)
+ tbl_branch r0, r3, #3
+ .fpu vfpv2
+ .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
+1: vmov r0, r1, d\dr
+ ret lr
+ .org 1b + 8
+ .endr
+#ifdef CONFIG_VFPv3
+ @ d16 - d31 registers
+ .fpu vfpv3
+ .irp dr,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+1: vmov r0, r1, d\dr
+ ret lr
+ .org 1b + 8
+ .endr
+#endif
+
+ @ virtual register 16 (or 32 if VFPv3) for compare with zero
+ mov r0, #0
+ mov r1, #0
+ ret lr
+ENDPROC(vfp_get_double)
+
+ENTRY(vfp_put_double)
+ tbl_branch r2, r3, #3
+ .fpu vfpv2
+ .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
+1: vmov d\dr, r0, r1
+ ret lr
+ .org 1b + 8
+ .endr
+#ifdef CONFIG_VFPv3
+ .fpu vfpv3
+ @ d16 - d31 registers
+ .irp dr,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+1: vmov d\dr, r0, r1
+ ret lr
+ .org 1b + 8
+ .endr
+#endif
+ENDPROC(vfp_put_double)