aboutsummaryrefslogtreecommitdiff
path: root/arch/m68k/ifpsp060/os.S
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /arch/m68k/ifpsp060/os.S
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'arch/m68k/ifpsp060/os.S')
-rw-r--r--arch/m68k/ifpsp060/os.S396
1 files changed, 396 insertions, 0 deletions
diff --git a/arch/m68k/ifpsp060/os.S b/arch/m68k/ifpsp060/os.S
new file mode 100644
index 000000000..7a0d6e428
--- /dev/null
+++ b/arch/m68k/ifpsp060/os.S
@@ -0,0 +1,396 @@
+|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+|MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
+|M68000 Hi-Performance Microprocessor Division
+|M68060 Software Package
+|Production Release P1.00 -- October 10, 1994
+|
+|M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
+|
+|THE SOFTWARE is provided on an "AS IS" basis and without warranty.
+|To the maximum extent permitted by applicable law,
+|MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
+|INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
+|and any warranty against infringement with regard to the SOFTWARE
+|(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
+|
+|To the maximum extent permitted by applicable law,
+|IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
+|(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
+|BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
+|ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
+|Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
+|
+|You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
+|so long as this entire notice is retained without alteration in any modified and/or
+|redistributed versions, and that such modified versions are clearly identified as such.
+|No licenses are granted by implication, estoppel or otherwise under any patents
+|or trademarks of Motorola, Inc.
+|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+| os.s
+|
+| This file contains:
+| - example "Call-Out"s required by both the ISP and FPSP.
+|
+
+#include <linux/linkage.h>
+
+|################################
+| EXAMPLE CALL-OUTS #
+| #
+| _060_dmem_write() #
+| _060_dmem_read() #
+| _060_imem_read() #
+| _060_dmem_read_byte() #
+| _060_dmem_read_word() #
+| _060_dmem_read_long() #
+| _060_imem_read_word() #
+| _060_imem_read_long() #
+| _060_dmem_write_byte() #
+| _060_dmem_write_word() #
+| _060_dmem_write_long() #
+| #
+| _060_real_trace() #
+| _060_real_access() #
+|################################
+
+|
+| Each IO routine checks to see if the memory write/read is to/from user
+| or supervisor application space. The examples below use simple "move"
+| instructions for supervisor mode applications and call _copyin()/_copyout()
+| for user mode applications.
+| When installing the 060SP, the _copyin()/_copyout() equivalents for a
+| given operating system should be substituted.
+|
+| The addresses within the 060SP are guaranteed to be on the stack.
+| The result is that Unix processes are allowed to sleep as a consequence
+| of a page fault during a _copyout.
+|
+| Linux/68k: The _060_[id]mem_{read,write}_{byte,word,long} functions
+| (i.e. all the known length <= 4) are implemented by single moves
+| statements instead of (more expensive) copy{in,out} calls, if
+| working in user space
+
+|
+| _060_dmem_write():
+|
+| Writes to data memory while in supervisor mode.
+|
+| INPUTS:
+| a0 - supervisor source address
+| a1 - user destination address
+| d0 - number of bytes to write
+| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
+| OUTPUTS:
+| d1 - 0 = success, !0 = failure
+|
+ .global _060_dmem_write
+_060_dmem_write:
+ subq.l #1,%d0
+ btst #0x5,0x4(%a6) | check for supervisor state
+ beqs user_write
+super_write:
+ move.b (%a0)+,(%a1)+ | copy 1 byte
+ dbra %d0,super_write | quit if --ctr < 0
+ clr.l %d1 | return success
+ rts
+user_write:
+ move.b (%a0)+,%d1 | copy 1 byte
+copyoutae:
+ movs.b %d1,(%a1)+
+ dbra %d0,user_write | quit if --ctr < 0
+ clr.l %d1 | return success
+ rts
+
+|
+| _060_imem_read(), _060_dmem_read():
+|
+| Reads from data/instruction memory while in supervisor mode.
+|
+| INPUTS:
+| a0 - user source address
+| a1 - supervisor destination address
+| d0 - number of bytes to read
+| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
+| OUTPUTS:
+| d1 - 0 = success, !0 = failure
+|
+ .global _060_imem_read
+ .global _060_dmem_read
+_060_imem_read:
+_060_dmem_read:
+ subq.l #1,%d0
+ btst #0x5,0x4(%a6) | check for supervisor state
+ beqs user_read
+super_read:
+ move.b (%a0)+,(%a1)+ | copy 1 byte
+ dbra %d0,super_read | quit if --ctr < 0
+ clr.l %d1 | return success
+ rts
+user_read:
+copyinae:
+ movs.b (%a0)+,%d1
+ move.b %d1,(%a1)+ | copy 1 byte
+ dbra %d0,user_read | quit if --ctr < 0
+ clr.l %d1 | return success
+ rts
+
+|
+| _060_dmem_read_byte():
+|
+| Read a data byte from user memory.
+|
+| INPUTS:
+| a0 - user source address
+| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
+| OUTPUTS:
+| d0 - data byte in d0
+| d1 - 0 = success, !0 = failure
+|
+ .global _060_dmem_read_byte
+_060_dmem_read_byte:
+ clr.l %d0 | clear whole longword
+ clr.l %d1 | assume success
+ btst #0x5,0x4(%a6) | check for supervisor state
+ bnes dmrbs | supervisor
+dmrbuae:movs.b (%a0),%d0 | fetch user byte
+ rts
+dmrbs: move.b (%a0),%d0 | fetch super byte
+ rts
+
+|
+| _060_dmem_read_word():
+|
+| Read a data word from user memory.
+|
+| INPUTS:
+| a0 - user source address
+| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
+| OUTPUTS:
+| d0 - data word in d0
+| d1 - 0 = success, !0 = failure
+|
+| _060_imem_read_word():
+|
+| Read an instruction word from user memory.
+|
+| INPUTS:
+| a0 - user source address
+| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
+| OUTPUTS:
+| d0 - instruction word in d0
+| d1 - 0 = success, !0 = failure
+|
+ .global _060_dmem_read_word
+ .global _060_imem_read_word
+_060_dmem_read_word:
+_060_imem_read_word:
+ clr.l %d1 | assume success
+ clr.l %d0 | clear whole longword
+ btst #0x5,0x4(%a6) | check for supervisor state
+ bnes dmrws | supervisor
+dmrwuae:movs.w (%a0), %d0 | fetch user word
+ rts
+dmrws: move.w (%a0), %d0 | fetch super word
+ rts
+
+|
+| _060_dmem_read_long():
+|
+
+|
+| INPUTS:
+| a0 - user source address
+| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
+| OUTPUTS:
+| d0 - data longword in d0
+| d1 - 0 = success, !0 = failure
+|
+| _060_imem_read_long():
+|
+| Read an instruction longword from user memory.
+|
+| INPUTS:
+| a0 - user source address
+| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
+| OUTPUTS:
+| d0 - instruction longword in d0
+| d1 - 0 = success, !0 = failure
+|
+ .global _060_dmem_read_long
+ .global _060_imem_read_long
+_060_dmem_read_long:
+_060_imem_read_long:
+ clr.l %d1 | assume success
+ btst #0x5,0x4(%a6) | check for supervisor state
+ bnes dmrls | supervisor
+dmrluae:movs.l (%a0),%d0 | fetch user longword
+ rts
+dmrls: move.l (%a0),%d0 | fetch super longword
+ rts
+
+|
+| _060_dmem_write_byte():
+|
+| Write a data byte to user memory.
+|
+| INPUTS:
+| a0 - user destination address
+| d0 - data byte in d0
+| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
+| OUTPUTS:
+| d1 - 0 = success, !0 = failure
+|
+ .global _060_dmem_write_byte
+_060_dmem_write_byte:
+ clr.l %d1 | assume success
+ btst #0x5,0x4(%a6) | check for supervisor state
+ bnes dmwbs | supervisor
+dmwbuae:movs.b %d0,(%a0) | store user byte
+ rts
+dmwbs: move.b %d0,(%a0) | store super byte
+ rts
+
+|
+| _060_dmem_write_word():
+|
+| Write a data word to user memory.
+|
+| INPUTS:
+| a0 - user destination address
+| d0 - data word in d0
+| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
+| OUTPUTS:
+| d1 - 0 = success, !0 = failure
+|
+ .global _060_dmem_write_word
+_060_dmem_write_word:
+ clr.l %d1 | assume success
+ btst #0x5,0x4(%a6) | check for supervisor state
+ bnes dmwws | supervisor
+dmwwu:
+dmwwuae:movs.w %d0,(%a0) | store user word
+ bras dmwwr
+dmwws: move.w %d0,(%a0) | store super word
+dmwwr: clr.l %d1 | return success
+ rts
+
+|
+| _060_dmem_write_long():
+|
+| Write a data longword to user memory.
+|
+| INPUTS:
+| a0 - user destination address
+| d0 - data longword in d0
+| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
+| OUTPUTS:
+| d1 - 0 = success, !0 = failure
+|
+ .global _060_dmem_write_long
+_060_dmem_write_long:
+ clr.l %d1 | assume success
+ btst #0x5,0x4(%a6) | check for supervisor state
+ bnes dmwls | supervisor
+dmwluae:movs.l %d0,(%a0) | store user longword
+ rts
+dmwls: move.l %d0,(%a0) | store super longword
+ rts
+
+
+#if 0
+|###############################################
+
+|
+| Use these routines if your kernel doesn't have _copyout/_copyin equivalents.
+| Assumes that D0/D1/A0/A1 are scratch registers. The _copyin/_copyout
+| below assume that the SFC/DFC have been set previously.
+|
+| Linux/68k: These are basically non-inlined versions of
+| memcpy_{to,from}fs, but without long-transfer optimization
+| Note: Assumed that SFC/DFC are pointing correctly to user data
+| space... Should be right, or are there any exceptions?
+
+|
+| int _copyout(supervisor_addr, user_addr, nbytes)
+|
+ .global _copyout
+_copyout:
+ move.l 4(%sp),%a0 | source
+ move.l 8(%sp),%a1 | destination
+ move.l 12(%sp),%d0 | count
+ subq.l #1,%d0
+moreout:
+ move.b (%a0)+,%d1 | fetch supervisor byte
+copyoutae:
+ movs.b %d1,(%a1)+ | store user byte
+ dbra %d0,moreout | are we through yet?
+ moveq #0,%d0 | return success
+ rts
+
+|
+| int _copyin(user_addr, supervisor_addr, nbytes)
+|
+ .global _copyin
+_copyin:
+ move.l 4(%sp),%a0 | source
+ move.l 8(%sp),%a1 | destination
+ move.l 12(%sp),%d0 | count
+ subq.l #1,%d0
+morein:
+copyinae:
+ movs.b (%a0)+,%d1 | fetch user byte
+ move.b %d1,(%a1)+ | write supervisor byte
+ dbra %d0,morein | are we through yet?
+ moveq #0,%d0 | return success
+ rts
+#endif
+
+|###########################################################################
+
+|
+| _060_real_trace():
+|
+| This is the exit point for the 060FPSP when an instruction is being traced
+| and there are no other higher priority exceptions pending for this instruction
+| or they have already been processed.
+|
+| The sample code below simply executes an "rte".
+|
+ .global _060_real_trace
+_060_real_trace:
+ bral trap
+
+|
+| _060_real_access():
+|
+| This is the exit point for the 060FPSP when an access error exception
+| is encountered. The routine below should point to the operating system
+| handler for access error exceptions. The exception stack frame is an
+| 8-word access error frame.
+|
+| The sample routine below simply executes an "rte" instruction which
+| is most likely the incorrect thing to do and could put the system
+| into an infinite loop.
+|
+ .global _060_real_access
+_060_real_access:
+ bral buserr
+
+
+
+| Execption handling for movs access to illegal memory
+ .section .fixup,#alloc,#execinstr
+ .even
+1: moveq #-1,%d1
+ rts
+.section __ex_table,#alloc
+ .align 4
+ .long dmrbuae,1b
+ .long dmrwuae,1b
+ .long dmrluae,1b
+ .long dmwbuae,1b
+ .long dmwwuae,1b
+ .long dmwluae,1b
+ .long copyoutae,1b
+ .long copyinae,1b
+ .text