diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /arch/powerpc/kvm/book3s_hv_ras.c | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'arch/powerpc/kvm/book3s_hv_ras.c')
-rw-r--r-- | arch/powerpc/kvm/book3s_hv_ras.c | 376 |
1 files changed, 376 insertions, 0 deletions
diff --git a/arch/powerpc/kvm/book3s_hv_ras.c b/arch/powerpc/kvm/book3s_hv_ras.c new file mode 100644 index 000000000..ccfd96965 --- /dev/null +++ b/arch/powerpc/kvm/book3s_hv_ras.c @@ -0,0 +1,376 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * + * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> + */ + +#include <linux/types.h> +#include <linux/string.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/kernel.h> +#include <asm/opal.h> +#include <asm/mce.h> +#include <asm/machdep.h> +#include <asm/cputhreads.h> +#include <asm/hmi.h> +#include <asm/kvm_ppc.h> + +/* SRR1 bits for machine check on POWER7 */ +#define SRR1_MC_LDSTERR (1ul << (63-42)) +#define SRR1_MC_IFETCH_SH (63-45) +#define SRR1_MC_IFETCH_MASK 0x7 +#define SRR1_MC_IFETCH_SLBPAR 2 /* SLB parity error */ +#define SRR1_MC_IFETCH_SLBMULTI 3 /* SLB multi-hit */ +#define SRR1_MC_IFETCH_SLBPARMULTI 4 /* SLB parity + multi-hit */ +#define SRR1_MC_IFETCH_TLBMULTI 5 /* I-TLB multi-hit */ + +/* DSISR bits for machine check on POWER7 */ +#define DSISR_MC_DERAT_MULTI 0x800 /* D-ERAT multi-hit */ +#define DSISR_MC_TLB_MULTI 0x400 /* D-TLB multi-hit */ +#define DSISR_MC_SLB_PARITY 0x100 /* SLB parity error */ +#define DSISR_MC_SLB_MULTI 0x080 /* SLB multi-hit */ +#define DSISR_MC_SLB_PARMULTI 0x040 /* SLB parity + multi-hit */ + +/* POWER7 SLB flush and reload */ +static void reload_slb(struct kvm_vcpu *vcpu) +{ + struct slb_shadow *slb; + unsigned long i, n; + + /* First clear out SLB */ + asm volatile("slbmte %0,%0; slbia" : : "r" (0)); + + /* Do they have an SLB shadow buffer registered? */ + slb = vcpu->arch.slb_shadow.pinned_addr; + if (!slb) + return; + + /* Sanity check */ + n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE); + if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end) + return; + + /* Load up the SLB from that */ + for (i = 0; i < n; ++i) { + unsigned long rb = be64_to_cpu(slb->save_area[i].esid); + unsigned long rs = be64_to_cpu(slb->save_area[i].vsid); + + rb = (rb & ~0xFFFul) | i; /* insert entry number */ + asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb)); + } +} + +/* + * On POWER7, see if we can handle a machine check that occurred inside + * the guest in real mode, without switching to the host partition. + */ +static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu) +{ + unsigned long srr1 = vcpu->arch.shregs.msr; + long handled = 1; + + if (srr1 & SRR1_MC_LDSTERR) { + /* error on load/store */ + unsigned long dsisr = vcpu->arch.shregs.dsisr; + + if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI | + DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) { + /* flush and reload SLB; flushes D-ERAT too */ + reload_slb(vcpu); + dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI | + DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI); + } + if (dsisr & DSISR_MC_TLB_MULTI) { + tlbiel_all_lpid(vcpu->kvm->arch.radix); + dsisr &= ~DSISR_MC_TLB_MULTI; + } + /* Any other errors we don't understand? */ + if (dsisr & 0xffffffffUL) + handled = 0; + } + + switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) { + case 0: + break; + case SRR1_MC_IFETCH_SLBPAR: + case SRR1_MC_IFETCH_SLBMULTI: + case SRR1_MC_IFETCH_SLBPARMULTI: + reload_slb(vcpu); + break; + case SRR1_MC_IFETCH_TLBMULTI: + tlbiel_all_lpid(vcpu->kvm->arch.radix); + break; + default: + handled = 0; + } + + return handled; +} + +void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu) +{ + struct machine_check_event mce_evt; + long handled; + + if (vcpu->kvm->arch.fwnmi_enabled) { + /* FWNMI guests handle their own recovery */ + handled = 0; + } else { + handled = kvmppc_realmode_mc_power7(vcpu); + } + + /* + * Now get the event and stash it in the vcpu struct so it can + * be handled by the primary thread in virtual mode. We can't + * call machine_check_queue_event() here if we are running on + * an offline secondary thread. + */ + if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) { + if (handled && mce_evt.version == MCE_V1) + mce_evt.disposition = MCE_DISPOSITION_RECOVERED; + } else { + memset(&mce_evt, 0, sizeof(mce_evt)); + } + + vcpu->arch.mce_evt = mce_evt; +} + + +long kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu *vcpu) +{ + struct kvmppc_vcore *vc = vcpu->arch.vcore; + long ret = 0; + + /* + * Unapply and clear the offset first. That way, if the TB was not + * resynced then it will remain in host-offset, and if it was resynced + * then it is brought into host-offset. Then the tb offset is + * re-applied before continuing with the KVM exit. + * + * This way, we don't need to actually know whether not OPAL resynced + * the timebase or do any of the complicated dance that the P7/8 + * path requires. + */ + if (vc->tb_offset_applied) { + u64 new_tb = mftb() - vc->tb_offset_applied; + mtspr(SPRN_TBU40, new_tb); + if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) { + new_tb += 0x1000000; + mtspr(SPRN_TBU40, new_tb); + } + vc->tb_offset_applied = 0; + } + + local_paca->hmi_irqs++; + + if (hmi_handle_debugtrig(NULL) >= 0) { + ret = 1; + goto out; + } + + if (ppc_md.hmi_exception_early) + ppc_md.hmi_exception_early(NULL); + +out: + if (vc->tb_offset) { + u64 new_tb = mftb() + vc->tb_offset; + mtspr(SPRN_TBU40, new_tb); + if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) { + new_tb += 0x1000000; + mtspr(SPRN_TBU40, new_tb); + } + vc->tb_offset_applied = vc->tb_offset; + } + + return ret; +} + +/* + * The following subcore HMI handling is all only for pre-POWER9 CPUs. + */ + +/* Check if dynamic split is in force and return subcore size accordingly. */ +static inline int kvmppc_cur_subcore_size(void) +{ + if (local_paca->kvm_hstate.kvm_split_mode) + return local_paca->kvm_hstate.kvm_split_mode->subcore_size; + + return threads_per_subcore; +} + +void kvmppc_subcore_enter_guest(void) +{ + int thread_id, subcore_id; + + thread_id = cpu_thread_in_core(local_paca->paca_index); + subcore_id = thread_id / kvmppc_cur_subcore_size(); + + local_paca->sibling_subcore_state->in_guest[subcore_id] = 1; +} +EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest); + +void kvmppc_subcore_exit_guest(void) +{ + int thread_id, subcore_id; + + thread_id = cpu_thread_in_core(local_paca->paca_index); + subcore_id = thread_id / kvmppc_cur_subcore_size(); + + local_paca->sibling_subcore_state->in_guest[subcore_id] = 0; +} +EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest); + +static bool kvmppc_tb_resync_required(void) +{ + if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT, + &local_paca->sibling_subcore_state->flags)) + return false; + + return true; +} + +static void kvmppc_tb_resync_done(void) +{ + clear_bit(CORE_TB_RESYNC_REQ_BIT, + &local_paca->sibling_subcore_state->flags); +} + +/* + * kvmppc_realmode_hmi_handler() is called only by primary thread during + * guest exit path. + * + * There are multiple reasons why HMI could occur, one of them is + * Timebase (TB) error. If this HMI is due to TB error, then TB would + * have been in stopped state. The opal hmi handler Will fix it and + * restore the TB value with host timebase value. For HMI caused due + * to non-TB errors, opal hmi handler will not touch/restore TB register + * and hence there won't be any change in TB value. + * + * Since we are not sure about the cause of this HMI, we can't be sure + * about the content of TB register whether it holds guest or host timebase + * value. Hence the idea is to resync the TB on every HMI, so that we + * know about the exact state of the TB value. Resync TB call will + * restore TB to host timebase. + * + * Things to consider: + * - On TB error, HMI interrupt is reported on all the threads of the core + * that has encountered TB error irrespective of split-core mode. + * - The very first thread on the core that get chance to fix TB error + * would rsync the TB with local chipTOD value. + * - The resync TB is a core level action i.e. it will sync all the TBs + * in that core independent of split-core mode. This means if we trigger + * TB sync from a thread from one subcore, it would affect TB values of + * sibling subcores of the same core. + * + * All threads need to co-ordinate before making opal hmi handler. + * All threads will use sibling_subcore_state->in_guest[] (shared by all + * threads in the core) in paca which holds information about whether + * sibling subcores are in Guest mode or host mode. The in_guest[] array + * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset + * subcore status. Only primary threads from each subcore is responsible + * to set/unset its designated array element while entering/exiting the + * guset. + * + * After invoking opal hmi handler call, one of the thread (of entire core) + * will need to resync the TB. Bit 63 from subcore state bitmap flags + * (sibling_subcore_state->flags) will be used to co-ordinate between + * primary threads to decide who takes up the responsibility. + * + * This is what we do: + * - Primary thread from each subcore tries to set resync required bit[63] + * of paca->sibling_subcore_state->flags. + * - The first primary thread that is able to set the flag takes the + * responsibility of TB resync. (Let us call it as thread leader) + * - All other threads which are in host will call + * wait_for_subcore_guest_exit() and wait for in_guest[0-3] from + * paca->sibling_subcore_state to get cleared. + * - All the primary thread will clear its subcore status from subcore + * state in_guest[] array respectively. + * - Once all primary threads clear in_guest[0-3], all of them will invoke + * opal hmi handler. + * - Now all threads will wait for TB resync to complete by invoking + * wait_for_tb_resync() except the thread leader. + * - Thread leader will do a TB resync by invoking opal_resync_timebase() + * call and the it will clear the resync required bit. + * - All other threads will now come out of resync wait loop and proceed + * with individual execution. + * - On return of this function, primary thread will signal all + * secondary threads to proceed. + * - All secondary threads will eventually call opal hmi handler on + * their exit path. + * + * Returns 1 if the timebase offset should be applied, 0 if not. + */ + +long kvmppc_realmode_hmi_handler(void) +{ + bool resync_req; + + local_paca->hmi_irqs++; + + if (hmi_handle_debugtrig(NULL) >= 0) + return 1; + + /* + * By now primary thread has already completed guest->host + * partition switch but haven't signaled secondaries yet. + * All the secondary threads on this subcore is waiting + * for primary thread to signal them to go ahead. + * + * For threads from subcore which isn't in guest, they all will + * wait until all other subcores on this core exit the guest. + * + * Now set the resync required bit. If you are the first to + * set this bit then kvmppc_tb_resync_required() function will + * return true. For rest all other subcores + * kvmppc_tb_resync_required() will return false. + * + * If resync_req == true, then this thread is responsible to + * initiate TB resync after hmi handler has completed. + * All other threads on this core will wait until this thread + * clears the resync required bit flag. + */ + resync_req = kvmppc_tb_resync_required(); + + /* Reset the subcore status to indicate it has exited guest */ + kvmppc_subcore_exit_guest(); + + /* + * Wait for other subcores on this core to exit the guest. + * All the primary threads and threads from subcore that are + * not in guest will wait here until all subcores are out + * of guest context. + */ + wait_for_subcore_guest_exit(); + + /* + * At this point we are sure that primary threads from each + * subcore on this core have completed guest->host partition + * switch. Now it is safe to call HMI handler. + */ + if (ppc_md.hmi_exception_early) + ppc_md.hmi_exception_early(NULL); + + /* + * Check if this thread is responsible to resync TB. + * All other threads will wait until this thread completes the + * TB resync. + */ + if (resync_req) { + opal_resync_timebase(); + /* Reset TB resync req bit */ + kvmppc_tb_resync_done(); + } else { + wait_for_tb_resync(); + } + + /* + * Reset tb_offset_applied so the guest exit code won't try + * to subtract the previous timebase offset from the timebase. + */ + if (local_paca->kvm_hstate.kvm_vcore) + local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0; + + return 0; +} |