diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /arch/riscv/net/bpf_jit_comp32.c | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'arch/riscv/net/bpf_jit_comp32.c')
-rw-r--r-- | arch/riscv/net/bpf_jit_comp32.c | 1357 |
1 files changed, 1357 insertions, 0 deletions
diff --git a/arch/riscv/net/bpf_jit_comp32.c b/arch/riscv/net/bpf_jit_comp32.c new file mode 100644 index 000000000..529a83b85 --- /dev/null +++ b/arch/riscv/net/bpf_jit_comp32.c @@ -0,0 +1,1357 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * BPF JIT compiler for RV32G + * + * Copyright (c) 2020 Luke Nelson <luke.r.nels@gmail.com> + * Copyright (c) 2020 Xi Wang <xi.wang@gmail.com> + * + * The code is based on the BPF JIT compiler for RV64G by Björn Töpel and + * the BPF JIT compiler for 32-bit ARM by Shubham Bansal and Mircea Gherzan. + */ + +#include <linux/bpf.h> +#include <linux/filter.h> +#include "bpf_jit.h" + +/* + * Stack layout during BPF program execution: + * + * high + * RV32 fp => +----------+ + * | saved ra | + * | saved fp | RV32 callee-saved registers + * | ... | + * +----------+ <= (fp - 4 * NR_SAVED_REGISTERS) + * | hi(R6) | + * | lo(R6) | + * | hi(R7) | JIT scratch space for BPF registers + * | lo(R7) | + * | ... | + * BPF_REG_FP => +----------+ <= (fp - 4 * NR_SAVED_REGISTERS + * | | - 4 * BPF_JIT_SCRATCH_REGS) + * | | + * | ... | BPF program stack + * | | + * RV32 sp => +----------+ + * | | + * | ... | Function call stack + * | | + * +----------+ + * low + */ + +enum { + /* Stack layout - these are offsets from top of JIT scratch space. */ + BPF_R6_HI, + BPF_R6_LO, + BPF_R7_HI, + BPF_R7_LO, + BPF_R8_HI, + BPF_R8_LO, + BPF_R9_HI, + BPF_R9_LO, + BPF_AX_HI, + BPF_AX_LO, + /* Stack space for BPF_REG_6 through BPF_REG_9 and BPF_REG_AX. */ + BPF_JIT_SCRATCH_REGS, +}; + +/* Number of callee-saved registers stored to stack: ra, fp, s1--s7. */ +#define NR_SAVED_REGISTERS 9 + +/* Offset from fp for BPF registers stored on stack. */ +#define STACK_OFFSET(k) (-4 - (4 * NR_SAVED_REGISTERS) - (4 * (k))) + +#define TMP_REG_1 (MAX_BPF_JIT_REG + 0) +#define TMP_REG_2 (MAX_BPF_JIT_REG + 1) + +#define RV_REG_TCC RV_REG_T6 +#define RV_REG_TCC_SAVED RV_REG_S7 + +static const s8 bpf2rv32[][2] = { + /* Return value from in-kernel function, and exit value from eBPF. */ + [BPF_REG_0] = {RV_REG_S2, RV_REG_S1}, + /* Arguments from eBPF program to in-kernel function. */ + [BPF_REG_1] = {RV_REG_A1, RV_REG_A0}, + [BPF_REG_2] = {RV_REG_A3, RV_REG_A2}, + [BPF_REG_3] = {RV_REG_A5, RV_REG_A4}, + [BPF_REG_4] = {RV_REG_A7, RV_REG_A6}, + [BPF_REG_5] = {RV_REG_S4, RV_REG_S3}, + /* + * Callee-saved registers that in-kernel function will preserve. + * Stored on the stack. + */ + [BPF_REG_6] = {STACK_OFFSET(BPF_R6_HI), STACK_OFFSET(BPF_R6_LO)}, + [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)}, + [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)}, + [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)}, + /* Read-only frame pointer to access BPF stack. */ + [BPF_REG_FP] = {RV_REG_S6, RV_REG_S5}, + /* Temporary register for blinding constants. Stored on the stack. */ + [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)}, + /* + * Temporary registers used by the JIT to operate on registers stored + * on the stack. Save t0 and t1 to be used as temporaries in generated + * code. + */ + [TMP_REG_1] = {RV_REG_T3, RV_REG_T2}, + [TMP_REG_2] = {RV_REG_T5, RV_REG_T4}, +}; + +static s8 hi(const s8 *r) +{ + return r[0]; +} + +static s8 lo(const s8 *r) +{ + return r[1]; +} + +static void emit_imm(const s8 rd, s32 imm, struct rv_jit_context *ctx) +{ + u32 upper = (imm + (1 << 11)) >> 12; + u32 lower = imm & 0xfff; + + if (upper) { + emit(rv_lui(rd, upper), ctx); + emit(rv_addi(rd, rd, lower), ctx); + } else { + emit(rv_addi(rd, RV_REG_ZERO, lower), ctx); + } +} + +static void emit_imm32(const s8 *rd, s32 imm, struct rv_jit_context *ctx) +{ + /* Emit immediate into lower bits. */ + emit_imm(lo(rd), imm, ctx); + + /* Sign-extend into upper bits. */ + if (imm >= 0) + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + else + emit(rv_addi(hi(rd), RV_REG_ZERO, -1), ctx); +} + +static void emit_imm64(const s8 *rd, s32 imm_hi, s32 imm_lo, + struct rv_jit_context *ctx) +{ + emit_imm(lo(rd), imm_lo, ctx); + emit_imm(hi(rd), imm_hi, ctx); +} + +static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx) +{ + int stack_adjust = ctx->stack_size; + const s8 *r0 = bpf2rv32[BPF_REG_0]; + + /* Set return value if not tail call. */ + if (!is_tail_call) { + emit(rv_addi(RV_REG_A0, lo(r0), 0), ctx); + emit(rv_addi(RV_REG_A1, hi(r0), 0), ctx); + } + + /* Restore callee-saved registers. */ + emit(rv_lw(RV_REG_RA, stack_adjust - 4, RV_REG_SP), ctx); + emit(rv_lw(RV_REG_FP, stack_adjust - 8, RV_REG_SP), ctx); + emit(rv_lw(RV_REG_S1, stack_adjust - 12, RV_REG_SP), ctx); + emit(rv_lw(RV_REG_S2, stack_adjust - 16, RV_REG_SP), ctx); + emit(rv_lw(RV_REG_S3, stack_adjust - 20, RV_REG_SP), ctx); + emit(rv_lw(RV_REG_S4, stack_adjust - 24, RV_REG_SP), ctx); + emit(rv_lw(RV_REG_S5, stack_adjust - 28, RV_REG_SP), ctx); + emit(rv_lw(RV_REG_S6, stack_adjust - 32, RV_REG_SP), ctx); + emit(rv_lw(RV_REG_S7, stack_adjust - 36, RV_REG_SP), ctx); + + emit(rv_addi(RV_REG_SP, RV_REG_SP, stack_adjust), ctx); + + if (is_tail_call) { + /* + * goto *(t0 + 4); + * Skips first instruction of prologue which initializes tail + * call counter. Assumes t0 contains address of target program, + * see emit_bpf_tail_call. + */ + emit(rv_jalr(RV_REG_ZERO, RV_REG_T0, 4), ctx); + } else { + emit(rv_jalr(RV_REG_ZERO, RV_REG_RA, 0), ctx); + } +} + +static bool is_stacked(s8 reg) +{ + return reg < 0; +} + +static const s8 *bpf_get_reg64(const s8 *reg, const s8 *tmp, + struct rv_jit_context *ctx) +{ + if (is_stacked(hi(reg))) { + emit(rv_lw(hi(tmp), hi(reg), RV_REG_FP), ctx); + emit(rv_lw(lo(tmp), lo(reg), RV_REG_FP), ctx); + reg = tmp; + } + return reg; +} + +static void bpf_put_reg64(const s8 *reg, const s8 *src, + struct rv_jit_context *ctx) +{ + if (is_stacked(hi(reg))) { + emit(rv_sw(RV_REG_FP, hi(reg), hi(src)), ctx); + emit(rv_sw(RV_REG_FP, lo(reg), lo(src)), ctx); + } +} + +static const s8 *bpf_get_reg32(const s8 *reg, const s8 *tmp, + struct rv_jit_context *ctx) +{ + if (is_stacked(lo(reg))) { + emit(rv_lw(lo(tmp), lo(reg), RV_REG_FP), ctx); + reg = tmp; + } + return reg; +} + +static void bpf_put_reg32(const s8 *reg, const s8 *src, + struct rv_jit_context *ctx) +{ + if (is_stacked(lo(reg))) { + emit(rv_sw(RV_REG_FP, lo(reg), lo(src)), ctx); + if (!ctx->prog->aux->verifier_zext) + emit(rv_sw(RV_REG_FP, hi(reg), RV_REG_ZERO), ctx); + } else if (!ctx->prog->aux->verifier_zext) { + emit(rv_addi(hi(reg), RV_REG_ZERO, 0), ctx); + } +} + +static void emit_jump_and_link(u8 rd, s32 rvoff, bool force_jalr, + struct rv_jit_context *ctx) +{ + s32 upper, lower; + + if (rvoff && is_21b_int(rvoff) && !force_jalr) { + emit(rv_jal(rd, rvoff >> 1), ctx); + return; + } + + upper = (rvoff + (1 << 11)) >> 12; + lower = rvoff & 0xfff; + emit(rv_auipc(RV_REG_T1, upper), ctx); + emit(rv_jalr(rd, RV_REG_T1, lower), ctx); +} + +static void emit_alu_i64(const s8 *dst, s32 imm, + struct rv_jit_context *ctx, const u8 op) +{ + const s8 *tmp1 = bpf2rv32[TMP_REG_1]; + const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); + + switch (op) { + case BPF_MOV: + emit_imm32(rd, imm, ctx); + break; + case BPF_AND: + if (is_12b_int(imm)) { + emit(rv_andi(lo(rd), lo(rd), imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_and(lo(rd), lo(rd), RV_REG_T0), ctx); + } + if (imm >= 0) + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + break; + case BPF_OR: + if (is_12b_int(imm)) { + emit(rv_ori(lo(rd), lo(rd), imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_or(lo(rd), lo(rd), RV_REG_T0), ctx); + } + if (imm < 0) + emit(rv_ori(hi(rd), RV_REG_ZERO, -1), ctx); + break; + case BPF_XOR: + if (is_12b_int(imm)) { + emit(rv_xori(lo(rd), lo(rd), imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_xor(lo(rd), lo(rd), RV_REG_T0), ctx); + } + if (imm < 0) + emit(rv_xori(hi(rd), hi(rd), -1), ctx); + break; + case BPF_LSH: + if (imm >= 32) { + emit(rv_slli(hi(rd), lo(rd), imm - 32), ctx); + emit(rv_addi(lo(rd), RV_REG_ZERO, 0), ctx); + } else if (imm == 0) { + /* Do nothing. */ + } else { + emit(rv_srli(RV_REG_T0, lo(rd), 32 - imm), ctx); + emit(rv_slli(hi(rd), hi(rd), imm), ctx); + emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx); + emit(rv_slli(lo(rd), lo(rd), imm), ctx); + } + break; + case BPF_RSH: + if (imm >= 32) { + emit(rv_srli(lo(rd), hi(rd), imm - 32), ctx); + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + } else if (imm == 0) { + /* Do nothing. */ + } else { + emit(rv_slli(RV_REG_T0, hi(rd), 32 - imm), ctx); + emit(rv_srli(lo(rd), lo(rd), imm), ctx); + emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx); + emit(rv_srli(hi(rd), hi(rd), imm), ctx); + } + break; + case BPF_ARSH: + if (imm >= 32) { + emit(rv_srai(lo(rd), hi(rd), imm - 32), ctx); + emit(rv_srai(hi(rd), hi(rd), 31), ctx); + } else if (imm == 0) { + /* Do nothing. */ + } else { + emit(rv_slli(RV_REG_T0, hi(rd), 32 - imm), ctx); + emit(rv_srli(lo(rd), lo(rd), imm), ctx); + emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx); + emit(rv_srai(hi(rd), hi(rd), imm), ctx); + } + break; + } + + bpf_put_reg64(dst, rd, ctx); +} + +static void emit_alu_i32(const s8 *dst, s32 imm, + struct rv_jit_context *ctx, const u8 op) +{ + const s8 *tmp1 = bpf2rv32[TMP_REG_1]; + const s8 *rd = bpf_get_reg32(dst, tmp1, ctx); + + switch (op) { + case BPF_MOV: + emit_imm(lo(rd), imm, ctx); + break; + case BPF_ADD: + if (is_12b_int(imm)) { + emit(rv_addi(lo(rd), lo(rd), imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_add(lo(rd), lo(rd), RV_REG_T0), ctx); + } + break; + case BPF_SUB: + if (is_12b_int(-imm)) { + emit(rv_addi(lo(rd), lo(rd), -imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_sub(lo(rd), lo(rd), RV_REG_T0), ctx); + } + break; + case BPF_AND: + if (is_12b_int(imm)) { + emit(rv_andi(lo(rd), lo(rd), imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_and(lo(rd), lo(rd), RV_REG_T0), ctx); + } + break; + case BPF_OR: + if (is_12b_int(imm)) { + emit(rv_ori(lo(rd), lo(rd), imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_or(lo(rd), lo(rd), RV_REG_T0), ctx); + } + break; + case BPF_XOR: + if (is_12b_int(imm)) { + emit(rv_xori(lo(rd), lo(rd), imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_xor(lo(rd), lo(rd), RV_REG_T0), ctx); + } + break; + case BPF_LSH: + if (is_12b_int(imm)) { + emit(rv_slli(lo(rd), lo(rd), imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_sll(lo(rd), lo(rd), RV_REG_T0), ctx); + } + break; + case BPF_RSH: + if (is_12b_int(imm)) { + emit(rv_srli(lo(rd), lo(rd), imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_srl(lo(rd), lo(rd), RV_REG_T0), ctx); + } + break; + case BPF_ARSH: + if (is_12b_int(imm)) { + emit(rv_srai(lo(rd), lo(rd), imm), ctx); + } else { + emit_imm(RV_REG_T0, imm, ctx); + emit(rv_sra(lo(rd), lo(rd), RV_REG_T0), ctx); + } + break; + } + + bpf_put_reg32(dst, rd, ctx); +} + +static void emit_alu_r64(const s8 *dst, const s8 *src, + struct rv_jit_context *ctx, const u8 op) +{ + const s8 *tmp1 = bpf2rv32[TMP_REG_1]; + const s8 *tmp2 = bpf2rv32[TMP_REG_2]; + const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); + const s8 *rs = bpf_get_reg64(src, tmp2, ctx); + + switch (op) { + case BPF_MOV: + emit(rv_addi(lo(rd), lo(rs), 0), ctx); + emit(rv_addi(hi(rd), hi(rs), 0), ctx); + break; + case BPF_ADD: + if (rd == rs) { + emit(rv_srli(RV_REG_T0, lo(rd), 31), ctx); + emit(rv_slli(hi(rd), hi(rd), 1), ctx); + emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx); + emit(rv_slli(lo(rd), lo(rd), 1), ctx); + } else { + emit(rv_add(lo(rd), lo(rd), lo(rs)), ctx); + emit(rv_sltu(RV_REG_T0, lo(rd), lo(rs)), ctx); + emit(rv_add(hi(rd), hi(rd), hi(rs)), ctx); + emit(rv_add(hi(rd), hi(rd), RV_REG_T0), ctx); + } + break; + case BPF_SUB: + emit(rv_sub(RV_REG_T1, hi(rd), hi(rs)), ctx); + emit(rv_sltu(RV_REG_T0, lo(rd), lo(rs)), ctx); + emit(rv_sub(hi(rd), RV_REG_T1, RV_REG_T0), ctx); + emit(rv_sub(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_AND: + emit(rv_and(lo(rd), lo(rd), lo(rs)), ctx); + emit(rv_and(hi(rd), hi(rd), hi(rs)), ctx); + break; + case BPF_OR: + emit(rv_or(lo(rd), lo(rd), lo(rs)), ctx); + emit(rv_or(hi(rd), hi(rd), hi(rs)), ctx); + break; + case BPF_XOR: + emit(rv_xor(lo(rd), lo(rd), lo(rs)), ctx); + emit(rv_xor(hi(rd), hi(rd), hi(rs)), ctx); + break; + case BPF_MUL: + emit(rv_mul(RV_REG_T0, hi(rs), lo(rd)), ctx); + emit(rv_mul(hi(rd), hi(rd), lo(rs)), ctx); + emit(rv_mulhu(RV_REG_T1, lo(rd), lo(rs)), ctx); + emit(rv_add(hi(rd), hi(rd), RV_REG_T0), ctx); + emit(rv_mul(lo(rd), lo(rd), lo(rs)), ctx); + emit(rv_add(hi(rd), hi(rd), RV_REG_T1), ctx); + break; + case BPF_LSH: + emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx); + emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx); + emit(rv_sll(hi(rd), lo(rd), RV_REG_T0), ctx); + emit(rv_addi(lo(rd), RV_REG_ZERO, 0), ctx); + emit(rv_jal(RV_REG_ZERO, 16), ctx); + emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx); + emit(rv_srli(RV_REG_T0, lo(rd), 1), ctx); + emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx); + emit(rv_srl(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx); + emit(rv_sll(hi(rd), hi(rd), lo(rs)), ctx); + emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx); + emit(rv_sll(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_RSH: + emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx); + emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx); + emit(rv_srl(lo(rd), hi(rd), RV_REG_T0), ctx); + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + emit(rv_jal(RV_REG_ZERO, 16), ctx); + emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx); + emit(rv_slli(RV_REG_T0, hi(rd), 1), ctx); + emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx); + emit(rv_sll(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx); + emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx); + emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx); + emit(rv_srl(hi(rd), hi(rd), lo(rs)), ctx); + break; + case BPF_ARSH: + emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx); + emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx); + emit(rv_sra(lo(rd), hi(rd), RV_REG_T0), ctx); + emit(rv_srai(hi(rd), hi(rd), 31), ctx); + emit(rv_jal(RV_REG_ZERO, 16), ctx); + emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx); + emit(rv_slli(RV_REG_T0, hi(rd), 1), ctx); + emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx); + emit(rv_sll(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx); + emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx); + emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx); + emit(rv_sra(hi(rd), hi(rd), lo(rs)), ctx); + break; + case BPF_NEG: + emit(rv_sub(lo(rd), RV_REG_ZERO, lo(rd)), ctx); + emit(rv_sltu(RV_REG_T0, RV_REG_ZERO, lo(rd)), ctx); + emit(rv_sub(hi(rd), RV_REG_ZERO, hi(rd)), ctx); + emit(rv_sub(hi(rd), hi(rd), RV_REG_T0), ctx); + break; + } + + bpf_put_reg64(dst, rd, ctx); +} + +static void emit_alu_r32(const s8 *dst, const s8 *src, + struct rv_jit_context *ctx, const u8 op) +{ + const s8 *tmp1 = bpf2rv32[TMP_REG_1]; + const s8 *tmp2 = bpf2rv32[TMP_REG_2]; + const s8 *rd = bpf_get_reg32(dst, tmp1, ctx); + const s8 *rs = bpf_get_reg32(src, tmp2, ctx); + + switch (op) { + case BPF_MOV: + emit(rv_addi(lo(rd), lo(rs), 0), ctx); + break; + case BPF_ADD: + emit(rv_add(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_SUB: + emit(rv_sub(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_AND: + emit(rv_and(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_OR: + emit(rv_or(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_XOR: + emit(rv_xor(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_MUL: + emit(rv_mul(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_DIV: + emit(rv_divu(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_MOD: + emit(rv_remu(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_LSH: + emit(rv_sll(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_RSH: + emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_ARSH: + emit(rv_sra(lo(rd), lo(rd), lo(rs)), ctx); + break; + case BPF_NEG: + emit(rv_sub(lo(rd), RV_REG_ZERO, lo(rd)), ctx); + break; + } + + bpf_put_reg32(dst, rd, ctx); +} + +static int emit_branch_r64(const s8 *src1, const s8 *src2, s32 rvoff, + struct rv_jit_context *ctx, const u8 op) +{ + int e, s = ctx->ninsns; + const s8 *tmp1 = bpf2rv32[TMP_REG_1]; + const s8 *tmp2 = bpf2rv32[TMP_REG_2]; + + const s8 *rs1 = bpf_get_reg64(src1, tmp1, ctx); + const s8 *rs2 = bpf_get_reg64(src2, tmp2, ctx); + + /* + * NO_JUMP skips over the rest of the instructions and the + * emit_jump_and_link, meaning the BPF branch is not taken. + * JUMP skips directly to the emit_jump_and_link, meaning + * the BPF branch is taken. + * + * The fallthrough case results in the BPF branch being taken. + */ +#define NO_JUMP(idx) (6 + (2 * (idx))) +#define JUMP(idx) (2 + (2 * (idx))) + + switch (op) { + case BPF_JEQ: + emit(rv_bne(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); + emit(rv_bne(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); + break; + case BPF_JGT: + emit(rv_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx); + emit(rv_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); + emit(rv_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); + break; + case BPF_JLT: + emit(rv_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx); + emit(rv_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); + emit(rv_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); + break; + case BPF_JGE: + emit(rv_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx); + emit(rv_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); + emit(rv_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); + break; + case BPF_JLE: + emit(rv_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx); + emit(rv_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); + emit(rv_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); + break; + case BPF_JNE: + emit(rv_bne(hi(rs1), hi(rs2), JUMP(1)), ctx); + emit(rv_beq(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); + break; + case BPF_JSGT: + emit(rv_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx); + emit(rv_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); + emit(rv_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); + break; + case BPF_JSLT: + emit(rv_blt(hi(rs1), hi(rs2), JUMP(2)), ctx); + emit(rv_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); + emit(rv_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); + break; + case BPF_JSGE: + emit(rv_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx); + emit(rv_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); + emit(rv_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); + break; + case BPF_JSLE: + emit(rv_blt(hi(rs1), hi(rs2), JUMP(2)), ctx); + emit(rv_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); + emit(rv_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); + break; + case BPF_JSET: + emit(rv_and(RV_REG_T0, hi(rs1), hi(rs2)), ctx); + emit(rv_bne(RV_REG_T0, RV_REG_ZERO, JUMP(2)), ctx); + emit(rv_and(RV_REG_T0, lo(rs1), lo(rs2)), ctx); + emit(rv_beq(RV_REG_T0, RV_REG_ZERO, NO_JUMP(0)), ctx); + break; + } + +#undef NO_JUMP +#undef JUMP + + e = ctx->ninsns; + /* Adjust for extra insns. */ + rvoff -= ninsns_rvoff(e - s); + emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx); + return 0; +} + +static int emit_bcc(u8 op, u8 rd, u8 rs, int rvoff, struct rv_jit_context *ctx) +{ + int e, s = ctx->ninsns; + bool far = false; + int off; + + if (op == BPF_JSET) { + /* + * BPF_JSET is a special case: it has no inverse so we always + * treat it as a far branch. + */ + far = true; + } else if (!is_13b_int(rvoff)) { + op = invert_bpf_cond(op); + far = true; + } + + /* + * For a far branch, the condition is negated and we jump over the + * branch itself, and the two instructions from emit_jump_and_link. + * For a near branch, just use rvoff. + */ + off = far ? 6 : (rvoff >> 1); + + switch (op) { + case BPF_JEQ: + emit(rv_beq(rd, rs, off), ctx); + break; + case BPF_JGT: + emit(rv_bgtu(rd, rs, off), ctx); + break; + case BPF_JLT: + emit(rv_bltu(rd, rs, off), ctx); + break; + case BPF_JGE: + emit(rv_bgeu(rd, rs, off), ctx); + break; + case BPF_JLE: + emit(rv_bleu(rd, rs, off), ctx); + break; + case BPF_JNE: + emit(rv_bne(rd, rs, off), ctx); + break; + case BPF_JSGT: + emit(rv_bgt(rd, rs, off), ctx); + break; + case BPF_JSLT: + emit(rv_blt(rd, rs, off), ctx); + break; + case BPF_JSGE: + emit(rv_bge(rd, rs, off), ctx); + break; + case BPF_JSLE: + emit(rv_ble(rd, rs, off), ctx); + break; + case BPF_JSET: + emit(rv_and(RV_REG_T0, rd, rs), ctx); + emit(rv_beq(RV_REG_T0, RV_REG_ZERO, off), ctx); + break; + } + + if (far) { + e = ctx->ninsns; + /* Adjust for extra insns. */ + rvoff -= ninsns_rvoff(e - s); + emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx); + } + return 0; +} + +static int emit_branch_r32(const s8 *src1, const s8 *src2, s32 rvoff, + struct rv_jit_context *ctx, const u8 op) +{ + int e, s = ctx->ninsns; + const s8 *tmp1 = bpf2rv32[TMP_REG_1]; + const s8 *tmp2 = bpf2rv32[TMP_REG_2]; + + const s8 *rs1 = bpf_get_reg32(src1, tmp1, ctx); + const s8 *rs2 = bpf_get_reg32(src2, tmp2, ctx); + + e = ctx->ninsns; + /* Adjust for extra insns. */ + rvoff -= ninsns_rvoff(e - s); + + if (emit_bcc(op, lo(rs1), lo(rs2), rvoff, ctx)) + return -1; + + return 0; +} + +static void emit_call(bool fixed, u64 addr, struct rv_jit_context *ctx) +{ + const s8 *r0 = bpf2rv32[BPF_REG_0]; + const s8 *r5 = bpf2rv32[BPF_REG_5]; + u32 upper = ((u32)addr + (1 << 11)) >> 12; + u32 lower = addr & 0xfff; + + /* R1-R4 already in correct registers---need to push R5 to stack. */ + emit(rv_addi(RV_REG_SP, RV_REG_SP, -16), ctx); + emit(rv_sw(RV_REG_SP, 0, lo(r5)), ctx); + emit(rv_sw(RV_REG_SP, 4, hi(r5)), ctx); + + /* Backup TCC. */ + emit(rv_addi(RV_REG_TCC_SAVED, RV_REG_TCC, 0), ctx); + + /* + * Use lui/jalr pair to jump to absolute address. Don't use emit_imm as + * the number of emitted instructions should not depend on the value of + * addr. + */ + emit(rv_lui(RV_REG_T1, upper), ctx); + emit(rv_jalr(RV_REG_RA, RV_REG_T1, lower), ctx); + + /* Restore TCC. */ + emit(rv_addi(RV_REG_TCC, RV_REG_TCC_SAVED, 0), ctx); + + /* Set return value and restore stack. */ + emit(rv_addi(lo(r0), RV_REG_A0, 0), ctx); + emit(rv_addi(hi(r0), RV_REG_A1, 0), ctx); + emit(rv_addi(RV_REG_SP, RV_REG_SP, 16), ctx); +} + +static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx) +{ + /* + * R1 -> &ctx + * R2 -> &array + * R3 -> index + */ + int tc_ninsn, off, start_insn = ctx->ninsns; + const s8 *arr_reg = bpf2rv32[BPF_REG_2]; + const s8 *idx_reg = bpf2rv32[BPF_REG_3]; + + tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] : + ctx->offset[0]; + + /* max_entries = array->map.max_entries; */ + off = offsetof(struct bpf_array, map.max_entries); + if (is_12b_check(off, insn)) + return -1; + emit(rv_lw(RV_REG_T1, off, lo(arr_reg)), ctx); + + /* + * if (index >= max_entries) + * goto out; + */ + off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn)); + emit_bcc(BPF_JGE, lo(idx_reg), RV_REG_T1, off, ctx); + + /* + * if (--tcc < 0) + * goto out; + */ + emit(rv_addi(RV_REG_TCC, RV_REG_TCC, -1), ctx); + off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn)); + emit_bcc(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx); + + /* + * prog = array->ptrs[index]; + * if (!prog) + * goto out; + */ + emit(rv_slli(RV_REG_T0, lo(idx_reg), 2), ctx); + emit(rv_add(RV_REG_T0, RV_REG_T0, lo(arr_reg)), ctx); + off = offsetof(struct bpf_array, ptrs); + if (is_12b_check(off, insn)) + return -1; + emit(rv_lw(RV_REG_T0, off, RV_REG_T0), ctx); + off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn)); + emit_bcc(BPF_JEQ, RV_REG_T0, RV_REG_ZERO, off, ctx); + + /* + * tcc = temp_tcc; + * goto *(prog->bpf_func + 4); + */ + off = offsetof(struct bpf_prog, bpf_func); + if (is_12b_check(off, insn)) + return -1; + emit(rv_lw(RV_REG_T0, off, RV_REG_T0), ctx); + /* Epilogue jumps to *(t0 + 4). */ + __build_epilogue(true, ctx); + return 0; +} + +static int emit_load_r64(const s8 *dst, const s8 *src, s16 off, + struct rv_jit_context *ctx, const u8 size) +{ + const s8 *tmp1 = bpf2rv32[TMP_REG_1]; + const s8 *tmp2 = bpf2rv32[TMP_REG_2]; + const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); + const s8 *rs = bpf_get_reg64(src, tmp2, ctx); + + emit_imm(RV_REG_T0, off, ctx); + emit(rv_add(RV_REG_T0, RV_REG_T0, lo(rs)), ctx); + + switch (size) { + case BPF_B: + emit(rv_lbu(lo(rd), 0, RV_REG_T0), ctx); + if (!ctx->prog->aux->verifier_zext) + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + break; + case BPF_H: + emit(rv_lhu(lo(rd), 0, RV_REG_T0), ctx); + if (!ctx->prog->aux->verifier_zext) + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + break; + case BPF_W: + emit(rv_lw(lo(rd), 0, RV_REG_T0), ctx); + if (!ctx->prog->aux->verifier_zext) + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + break; + case BPF_DW: + emit(rv_lw(lo(rd), 0, RV_REG_T0), ctx); + emit(rv_lw(hi(rd), 4, RV_REG_T0), ctx); + break; + } + + bpf_put_reg64(dst, rd, ctx); + return 0; +} + +static int emit_store_r64(const s8 *dst, const s8 *src, s16 off, + struct rv_jit_context *ctx, const u8 size, + const u8 mode) +{ + const s8 *tmp1 = bpf2rv32[TMP_REG_1]; + const s8 *tmp2 = bpf2rv32[TMP_REG_2]; + const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); + const s8 *rs = bpf_get_reg64(src, tmp2, ctx); + + if (mode == BPF_ATOMIC && size != BPF_W) + return -1; + + emit_imm(RV_REG_T0, off, ctx); + emit(rv_add(RV_REG_T0, RV_REG_T0, lo(rd)), ctx); + + switch (size) { + case BPF_B: + emit(rv_sb(RV_REG_T0, 0, lo(rs)), ctx); + break; + case BPF_H: + emit(rv_sh(RV_REG_T0, 0, lo(rs)), ctx); + break; + case BPF_W: + switch (mode) { + case BPF_MEM: + emit(rv_sw(RV_REG_T0, 0, lo(rs)), ctx); + break; + case BPF_ATOMIC: /* Only BPF_ADD supported */ + emit(rv_amoadd_w(RV_REG_ZERO, lo(rs), RV_REG_T0, 0, 0), + ctx); + break; + } + break; + case BPF_DW: + emit(rv_sw(RV_REG_T0, 0, lo(rs)), ctx); + emit(rv_sw(RV_REG_T0, 4, hi(rs)), ctx); + break; + } + + return 0; +} + +static void emit_rev16(const s8 rd, struct rv_jit_context *ctx) +{ + emit(rv_slli(rd, rd, 16), ctx); + emit(rv_slli(RV_REG_T1, rd, 8), ctx); + emit(rv_srli(rd, rd, 8), ctx); + emit(rv_add(RV_REG_T1, rd, RV_REG_T1), ctx); + emit(rv_srli(rd, RV_REG_T1, 16), ctx); +} + +static void emit_rev32(const s8 rd, struct rv_jit_context *ctx) +{ + emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 0), ctx); + emit(rv_andi(RV_REG_T0, rd, 255), ctx); + emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx); + emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx); + emit(rv_srli(rd, rd, 8), ctx); + emit(rv_andi(RV_REG_T0, rd, 255), ctx); + emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx); + emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx); + emit(rv_srli(rd, rd, 8), ctx); + emit(rv_andi(RV_REG_T0, rd, 255), ctx); + emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx); + emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx); + emit(rv_srli(rd, rd, 8), ctx); + emit(rv_andi(RV_REG_T0, rd, 255), ctx); + emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx); + emit(rv_addi(rd, RV_REG_T1, 0), ctx); +} + +static void emit_zext64(const s8 *dst, struct rv_jit_context *ctx) +{ + const s8 *rd; + const s8 *tmp1 = bpf2rv32[TMP_REG_1]; + + rd = bpf_get_reg64(dst, tmp1, ctx); + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + bpf_put_reg64(dst, rd, ctx); +} + +int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx, + bool extra_pass) +{ + bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 || + BPF_CLASS(insn->code) == BPF_JMP; + int s, e, rvoff, i = insn - ctx->prog->insnsi; + u8 code = insn->code; + s16 off = insn->off; + s32 imm = insn->imm; + + const s8 *dst = bpf2rv32[insn->dst_reg]; + const s8 *src = bpf2rv32[insn->src_reg]; + const s8 *tmp1 = bpf2rv32[TMP_REG_1]; + const s8 *tmp2 = bpf2rv32[TMP_REG_2]; + + switch (code) { + case BPF_ALU64 | BPF_MOV | BPF_X: + + case BPF_ALU64 | BPF_ADD | BPF_X: + case BPF_ALU64 | BPF_ADD | BPF_K: + + case BPF_ALU64 | BPF_SUB | BPF_X: + case BPF_ALU64 | BPF_SUB | BPF_K: + + case BPF_ALU64 | BPF_AND | BPF_X: + case BPF_ALU64 | BPF_OR | BPF_X: + case BPF_ALU64 | BPF_XOR | BPF_X: + + case BPF_ALU64 | BPF_MUL | BPF_X: + case BPF_ALU64 | BPF_MUL | BPF_K: + + case BPF_ALU64 | BPF_LSH | BPF_X: + case BPF_ALU64 | BPF_RSH | BPF_X: + case BPF_ALU64 | BPF_ARSH | BPF_X: + if (BPF_SRC(code) == BPF_K) { + emit_imm32(tmp2, imm, ctx); + src = tmp2; + } + emit_alu_r64(dst, src, ctx, BPF_OP(code)); + break; + + case BPF_ALU64 | BPF_NEG: + emit_alu_r64(dst, tmp2, ctx, BPF_OP(code)); + break; + + case BPF_ALU64 | BPF_DIV | BPF_X: + case BPF_ALU64 | BPF_DIV | BPF_K: + case BPF_ALU64 | BPF_MOD | BPF_X: + case BPF_ALU64 | BPF_MOD | BPF_K: + goto notsupported; + + case BPF_ALU64 | BPF_MOV | BPF_K: + case BPF_ALU64 | BPF_AND | BPF_K: + case BPF_ALU64 | BPF_OR | BPF_K: + case BPF_ALU64 | BPF_XOR | BPF_K: + case BPF_ALU64 | BPF_LSH | BPF_K: + case BPF_ALU64 | BPF_RSH | BPF_K: + case BPF_ALU64 | BPF_ARSH | BPF_K: + emit_alu_i64(dst, imm, ctx, BPF_OP(code)); + break; + + case BPF_ALU | BPF_MOV | BPF_X: + if (imm == 1) { + /* Special mov32 for zext. */ + emit_zext64(dst, ctx); + break; + } + fallthrough; + + case BPF_ALU | BPF_ADD | BPF_X: + case BPF_ALU | BPF_SUB | BPF_X: + case BPF_ALU | BPF_AND | BPF_X: + case BPF_ALU | BPF_OR | BPF_X: + case BPF_ALU | BPF_XOR | BPF_X: + + case BPF_ALU | BPF_MUL | BPF_X: + case BPF_ALU | BPF_MUL | BPF_K: + + case BPF_ALU | BPF_DIV | BPF_X: + case BPF_ALU | BPF_DIV | BPF_K: + + case BPF_ALU | BPF_MOD | BPF_X: + case BPF_ALU | BPF_MOD | BPF_K: + + case BPF_ALU | BPF_LSH | BPF_X: + case BPF_ALU | BPF_RSH | BPF_X: + case BPF_ALU | BPF_ARSH | BPF_X: + if (BPF_SRC(code) == BPF_K) { + emit_imm32(tmp2, imm, ctx); + src = tmp2; + } + emit_alu_r32(dst, src, ctx, BPF_OP(code)); + break; + + case BPF_ALU | BPF_MOV | BPF_K: + case BPF_ALU | BPF_ADD | BPF_K: + case BPF_ALU | BPF_SUB | BPF_K: + case BPF_ALU | BPF_AND | BPF_K: + case BPF_ALU | BPF_OR | BPF_K: + case BPF_ALU | BPF_XOR | BPF_K: + case BPF_ALU | BPF_LSH | BPF_K: + case BPF_ALU | BPF_RSH | BPF_K: + case BPF_ALU | BPF_ARSH | BPF_K: + /* + * mul,div,mod are handled in the BPF_X case since there are + * no RISC-V I-type equivalents. + */ + emit_alu_i32(dst, imm, ctx, BPF_OP(code)); + break; + + case BPF_ALU | BPF_NEG: + /* + * src is ignored---choose tmp2 as a dummy register since it + * is not on the stack. + */ + emit_alu_r32(dst, tmp2, ctx, BPF_OP(code)); + break; + + case BPF_ALU | BPF_END | BPF_FROM_LE: + { + const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); + + switch (imm) { + case 16: + emit(rv_slli(lo(rd), lo(rd), 16), ctx); + emit(rv_srli(lo(rd), lo(rd), 16), ctx); + fallthrough; + case 32: + if (!ctx->prog->aux->verifier_zext) + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + break; + case 64: + /* Do nothing. */ + break; + default: + pr_err("bpf-jit: BPF_END imm %d invalid\n", imm); + return -1; + } + + bpf_put_reg64(dst, rd, ctx); + break; + } + + case BPF_ALU | BPF_END | BPF_FROM_BE: + { + const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); + + switch (imm) { + case 16: + emit_rev16(lo(rd), ctx); + if (!ctx->prog->aux->verifier_zext) + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + break; + case 32: + emit_rev32(lo(rd), ctx); + if (!ctx->prog->aux->verifier_zext) + emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); + break; + case 64: + /* Swap upper and lower halves. */ + emit(rv_addi(RV_REG_T0, lo(rd), 0), ctx); + emit(rv_addi(lo(rd), hi(rd), 0), ctx); + emit(rv_addi(hi(rd), RV_REG_T0, 0), ctx); + + /* Swap each half. */ + emit_rev32(lo(rd), ctx); + emit_rev32(hi(rd), ctx); + break; + default: + pr_err("bpf-jit: BPF_END imm %d invalid\n", imm); + return -1; + } + + bpf_put_reg64(dst, rd, ctx); + break; + } + + case BPF_JMP | BPF_JA: + rvoff = rv_offset(i, off, ctx); + emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx); + break; + + case BPF_JMP | BPF_CALL: + { + bool fixed; + int ret; + u64 addr; + + ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr, + &fixed); + if (ret < 0) + return ret; + emit_call(fixed, addr, ctx); + break; + } + + case BPF_JMP | BPF_TAIL_CALL: + if (emit_bpf_tail_call(i, ctx)) + return -1; + break; + + case BPF_JMP | BPF_JEQ | BPF_X: + case BPF_JMP | BPF_JEQ | BPF_K: + case BPF_JMP32 | BPF_JEQ | BPF_X: + case BPF_JMP32 | BPF_JEQ | BPF_K: + + case BPF_JMP | BPF_JNE | BPF_X: + case BPF_JMP | BPF_JNE | BPF_K: + case BPF_JMP32 | BPF_JNE | BPF_X: + case BPF_JMP32 | BPF_JNE | BPF_K: + + case BPF_JMP | BPF_JLE | BPF_X: + case BPF_JMP | BPF_JLE | BPF_K: + case BPF_JMP32 | BPF_JLE | BPF_X: + case BPF_JMP32 | BPF_JLE | BPF_K: + + case BPF_JMP | BPF_JLT | BPF_X: + case BPF_JMP | BPF_JLT | BPF_K: + case BPF_JMP32 | BPF_JLT | BPF_X: + case BPF_JMP32 | BPF_JLT | BPF_K: + + case BPF_JMP | BPF_JGE | BPF_X: + case BPF_JMP | BPF_JGE | BPF_K: + case BPF_JMP32 | BPF_JGE | BPF_X: + case BPF_JMP32 | BPF_JGE | BPF_K: + + case BPF_JMP | BPF_JGT | BPF_X: + case BPF_JMP | BPF_JGT | BPF_K: + case BPF_JMP32 | BPF_JGT | BPF_X: + case BPF_JMP32 | BPF_JGT | BPF_K: + + case BPF_JMP | BPF_JSLE | BPF_X: + case BPF_JMP | BPF_JSLE | BPF_K: + case BPF_JMP32 | BPF_JSLE | BPF_X: + case BPF_JMP32 | BPF_JSLE | BPF_K: + + case BPF_JMP | BPF_JSLT | BPF_X: + case BPF_JMP | BPF_JSLT | BPF_K: + case BPF_JMP32 | BPF_JSLT | BPF_X: + case BPF_JMP32 | BPF_JSLT | BPF_K: + + case BPF_JMP | BPF_JSGE | BPF_X: + case BPF_JMP | BPF_JSGE | BPF_K: + case BPF_JMP32 | BPF_JSGE | BPF_X: + case BPF_JMP32 | BPF_JSGE | BPF_K: + + case BPF_JMP | BPF_JSGT | BPF_X: + case BPF_JMP | BPF_JSGT | BPF_K: + case BPF_JMP32 | BPF_JSGT | BPF_X: + case BPF_JMP32 | BPF_JSGT | BPF_K: + + case BPF_JMP | BPF_JSET | BPF_X: + case BPF_JMP | BPF_JSET | BPF_K: + case BPF_JMP32 | BPF_JSET | BPF_X: + case BPF_JMP32 | BPF_JSET | BPF_K: + rvoff = rv_offset(i, off, ctx); + if (BPF_SRC(code) == BPF_K) { + s = ctx->ninsns; + emit_imm32(tmp2, imm, ctx); + src = tmp2; + e = ctx->ninsns; + rvoff -= ninsns_rvoff(e - s); + } + + if (is64) + emit_branch_r64(dst, src, rvoff, ctx, BPF_OP(code)); + else + emit_branch_r32(dst, src, rvoff, ctx, BPF_OP(code)); + break; + + case BPF_JMP | BPF_EXIT: + if (i == ctx->prog->len - 1) + break; + + rvoff = epilogue_offset(ctx); + emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx); + break; + + case BPF_LD | BPF_IMM | BPF_DW: + { + struct bpf_insn insn1 = insn[1]; + s32 imm_lo = imm; + s32 imm_hi = insn1.imm; + const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); + + emit_imm64(rd, imm_hi, imm_lo, ctx); + bpf_put_reg64(dst, rd, ctx); + return 1; + } + + case BPF_LDX | BPF_MEM | BPF_B: + case BPF_LDX | BPF_MEM | BPF_H: + case BPF_LDX | BPF_MEM | BPF_W: + case BPF_LDX | BPF_MEM | BPF_DW: + if (emit_load_r64(dst, src, off, ctx, BPF_SIZE(code))) + return -1; + break; + + /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + break; + + case BPF_ST | BPF_MEM | BPF_B: + case BPF_ST | BPF_MEM | BPF_H: + case BPF_ST | BPF_MEM | BPF_W: + case BPF_ST | BPF_MEM | BPF_DW: + + case BPF_STX | BPF_MEM | BPF_B: + case BPF_STX | BPF_MEM | BPF_H: + case BPF_STX | BPF_MEM | BPF_W: + case BPF_STX | BPF_MEM | BPF_DW: + if (BPF_CLASS(code) == BPF_ST) { + emit_imm32(tmp2, imm, ctx); + src = tmp2; + } + + if (emit_store_r64(dst, src, off, ctx, BPF_SIZE(code), + BPF_MODE(code))) + return -1; + break; + + case BPF_STX | BPF_ATOMIC | BPF_W: + if (insn->imm != BPF_ADD) { + pr_info_once( + "bpf-jit: not supported: atomic operation %02x ***\n", + insn->imm); + return -EFAULT; + } + + if (emit_store_r64(dst, src, off, ctx, BPF_SIZE(code), + BPF_MODE(code))) + return -1; + break; + + /* No hardware support for 8-byte atomics in RV32. */ + case BPF_STX | BPF_ATOMIC | BPF_DW: + /* Fallthrough. */ + +notsupported: + pr_info_once("bpf-jit: not supported: opcode %02x ***\n", code); + return -EFAULT; + + default: + pr_err("bpf-jit: unknown opcode %02x\n", code); + return -EINVAL; + } + + return 0; +} + +void bpf_jit_build_prologue(struct rv_jit_context *ctx) +{ + const s8 *fp = bpf2rv32[BPF_REG_FP]; + const s8 *r1 = bpf2rv32[BPF_REG_1]; + int stack_adjust = 0; + int bpf_stack_adjust = + round_up(ctx->prog->aux->stack_depth, STACK_ALIGN); + + /* Make space for callee-saved registers. */ + stack_adjust += NR_SAVED_REGISTERS * sizeof(u32); + /* Make space for BPF registers on stack. */ + stack_adjust += BPF_JIT_SCRATCH_REGS * sizeof(u32); + /* Make space for BPF stack. */ + stack_adjust += bpf_stack_adjust; + /* Round up for stack alignment. */ + stack_adjust = round_up(stack_adjust, STACK_ALIGN); + + /* + * The first instruction sets the tail-call-counter (TCC) register. + * This instruction is skipped by tail calls. + */ + emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx); + + emit(rv_addi(RV_REG_SP, RV_REG_SP, -stack_adjust), ctx); + + /* Save callee-save registers. */ + emit(rv_sw(RV_REG_SP, stack_adjust - 4, RV_REG_RA), ctx); + emit(rv_sw(RV_REG_SP, stack_adjust - 8, RV_REG_FP), ctx); + emit(rv_sw(RV_REG_SP, stack_adjust - 12, RV_REG_S1), ctx); + emit(rv_sw(RV_REG_SP, stack_adjust - 16, RV_REG_S2), ctx); + emit(rv_sw(RV_REG_SP, stack_adjust - 20, RV_REG_S3), ctx); + emit(rv_sw(RV_REG_SP, stack_adjust - 24, RV_REG_S4), ctx); + emit(rv_sw(RV_REG_SP, stack_adjust - 28, RV_REG_S5), ctx); + emit(rv_sw(RV_REG_SP, stack_adjust - 32, RV_REG_S6), ctx); + emit(rv_sw(RV_REG_SP, stack_adjust - 36, RV_REG_S7), ctx); + + /* Set fp: used as the base address for stacked BPF registers. */ + emit(rv_addi(RV_REG_FP, RV_REG_SP, stack_adjust), ctx); + + /* Set up BPF frame pointer. */ + emit(rv_addi(lo(fp), RV_REG_SP, bpf_stack_adjust), ctx); + emit(rv_addi(hi(fp), RV_REG_ZERO, 0), ctx); + + /* Set up BPF context pointer. */ + emit(rv_addi(lo(r1), RV_REG_A0, 0), ctx); + emit(rv_addi(hi(r1), RV_REG_ZERO, 0), ctx); + + ctx->stack_size = stack_adjust; +} + +void bpf_jit_build_epilogue(struct rv_jit_context *ctx) +{ + __build_epilogue(false, ctx); +} |