aboutsummaryrefslogtreecommitdiff
path: root/crypto/asymmetric_keys/restrict.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /crypto/asymmetric_keys/restrict.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'crypto/asymmetric_keys/restrict.c')
-rw-r--r--crypto/asymmetric_keys/restrict.c275
1 files changed, 275 insertions, 0 deletions
diff --git a/crypto/asymmetric_keys/restrict.c b/crypto/asymmetric_keys/restrict.c
new file mode 100644
index 000000000..6b1ac5f58
--- /dev/null
+++ b/crypto/asymmetric_keys/restrict.c
@@ -0,0 +1,275 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/* Instantiate a public key crypto key from an X.509 Certificate
+ *
+ * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved.
+ * Written by David Howells (dhowells@redhat.com)
+ */
+
+#define pr_fmt(fmt) "ASYM: "fmt
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/err.h>
+#include <crypto/public_key.h>
+#include "asymmetric_keys.h"
+
+static bool use_builtin_keys;
+static struct asymmetric_key_id *ca_keyid;
+
+#ifndef MODULE
+static struct {
+ struct asymmetric_key_id id;
+ unsigned char data[10];
+} cakey;
+
+static int __init ca_keys_setup(char *str)
+{
+ if (!str) /* default system keyring */
+ return 1;
+
+ if (strncmp(str, "id:", 3) == 0) {
+ struct asymmetric_key_id *p = &cakey.id;
+ size_t hexlen = (strlen(str) - 3) / 2;
+ int ret;
+
+ if (hexlen == 0 || hexlen > sizeof(cakey.data)) {
+ pr_err("Missing or invalid ca_keys id\n");
+ return 1;
+ }
+
+ ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen);
+ if (ret < 0)
+ pr_err("Unparsable ca_keys id hex string\n");
+ else
+ ca_keyid = p; /* owner key 'id:xxxxxx' */
+ } else if (strcmp(str, "builtin") == 0) {
+ use_builtin_keys = true;
+ }
+
+ return 1;
+}
+__setup("ca_keys=", ca_keys_setup);
+#endif
+
+/**
+ * restrict_link_by_signature - Restrict additions to a ring of public keys
+ * @dest_keyring: Keyring being linked to.
+ * @type: The type of key being added.
+ * @payload: The payload of the new key.
+ * @trust_keyring: A ring of keys that can be used to vouch for the new cert.
+ *
+ * Check the new certificate against the ones in the trust keyring. If one of
+ * those is the signing key and validates the new certificate, then mark the
+ * new certificate as being trusted.
+ *
+ * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a
+ * matching parent certificate in the trusted list, -EKEYREJECTED if the
+ * signature check fails or the key is blacklisted, -ENOPKG if the signature
+ * uses unsupported crypto, or some other error if there is a matching
+ * certificate but the signature check cannot be performed.
+ */
+int restrict_link_by_signature(struct key *dest_keyring,
+ const struct key_type *type,
+ const union key_payload *payload,
+ struct key *trust_keyring)
+{
+ const struct public_key_signature *sig;
+ struct key *key;
+ int ret;
+
+ pr_devel("==>%s()\n", __func__);
+
+ if (!trust_keyring)
+ return -ENOKEY;
+
+ if (type != &key_type_asymmetric)
+ return -EOPNOTSUPP;
+
+ sig = payload->data[asym_auth];
+ if (!sig)
+ return -ENOPKG;
+ if (!sig->auth_ids[0] && !sig->auth_ids[1] && !sig->auth_ids[2])
+ return -ENOKEY;
+
+ if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid))
+ return -EPERM;
+
+ /* See if we have a key that signed this one. */
+ key = find_asymmetric_key(trust_keyring,
+ sig->auth_ids[0], sig->auth_ids[1],
+ sig->auth_ids[2], false);
+ if (IS_ERR(key))
+ return -ENOKEY;
+
+ if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags))
+ ret = -ENOKEY;
+ else
+ ret = verify_signature(key, sig);
+ key_put(key);
+ return ret;
+}
+
+static bool match_either_id(const struct asymmetric_key_id **pair,
+ const struct asymmetric_key_id *single)
+{
+ return (asymmetric_key_id_same(pair[0], single) ||
+ asymmetric_key_id_same(pair[1], single));
+}
+
+static int key_or_keyring_common(struct key *dest_keyring,
+ const struct key_type *type,
+ const union key_payload *payload,
+ struct key *trusted, bool check_dest)
+{
+ const struct public_key_signature *sig;
+ struct key *key = NULL;
+ int ret;
+
+ pr_devel("==>%s()\n", __func__);
+
+ if (!dest_keyring)
+ return -ENOKEY;
+ else if (dest_keyring->type != &key_type_keyring)
+ return -EOPNOTSUPP;
+
+ if (!trusted && !check_dest)
+ return -ENOKEY;
+
+ if (type != &key_type_asymmetric)
+ return -EOPNOTSUPP;
+
+ sig = payload->data[asym_auth];
+ if (!sig)
+ return -ENOPKG;
+ if (!sig->auth_ids[0] && !sig->auth_ids[1] && !sig->auth_ids[2])
+ return -ENOKEY;
+
+ if (trusted) {
+ if (trusted->type == &key_type_keyring) {
+ /* See if we have a key that signed this one. */
+ key = find_asymmetric_key(trusted, sig->auth_ids[0],
+ sig->auth_ids[1],
+ sig->auth_ids[2], false);
+ if (IS_ERR(key))
+ key = NULL;
+ } else if (trusted->type == &key_type_asymmetric) {
+ const struct asymmetric_key_id **signer_ids;
+
+ signer_ids = (const struct asymmetric_key_id **)
+ asymmetric_key_ids(trusted)->id;
+
+ /*
+ * The auth_ids come from the candidate key (the
+ * one that is being considered for addition to
+ * dest_keyring) and identify the key that was
+ * used to sign.
+ *
+ * The signer_ids are identifiers for the
+ * signing key specified for dest_keyring.
+ *
+ * The first auth_id is the preferred id, 2nd and
+ * 3rd are the fallbacks. If exactly one of
+ * auth_ids[0] and auth_ids[1] is present, it may
+ * match either signer_ids[0] or signed_ids[1].
+ * If both are present the first one may match
+ * either signed_id but the second one must match
+ * the second signer_id. If neither of them is
+ * available, auth_ids[2] is matched against
+ * signer_ids[2] as a fallback.
+ */
+ if (!sig->auth_ids[0] && !sig->auth_ids[1]) {
+ if (asymmetric_key_id_same(signer_ids[2],
+ sig->auth_ids[2]))
+ key = __key_get(trusted);
+
+ } else if (!sig->auth_ids[0] || !sig->auth_ids[1]) {
+ const struct asymmetric_key_id *auth_id;
+
+ auth_id = sig->auth_ids[0] ?: sig->auth_ids[1];
+ if (match_either_id(signer_ids, auth_id))
+ key = __key_get(trusted);
+
+ } else if (asymmetric_key_id_same(signer_ids[1],
+ sig->auth_ids[1]) &&
+ match_either_id(signer_ids,
+ sig->auth_ids[0])) {
+ key = __key_get(trusted);
+ }
+ } else {
+ return -EOPNOTSUPP;
+ }
+ }
+
+ if (check_dest && !key) {
+ /* See if the destination has a key that signed this one. */
+ key = find_asymmetric_key(dest_keyring, sig->auth_ids[0],
+ sig->auth_ids[1], sig->auth_ids[2],
+ false);
+ if (IS_ERR(key))
+ key = NULL;
+ }
+
+ if (!key)
+ return -ENOKEY;
+
+ ret = key_validate(key);
+ if (ret == 0)
+ ret = verify_signature(key, sig);
+
+ key_put(key);
+ return ret;
+}
+
+/**
+ * restrict_link_by_key_or_keyring - Restrict additions to a ring of public
+ * keys using the restrict_key information stored in the ring.
+ * @dest_keyring: Keyring being linked to.
+ * @type: The type of key being added.
+ * @payload: The payload of the new key.
+ * @trusted: A key or ring of keys that can be used to vouch for the new cert.
+ *
+ * Check the new certificate only against the key or keys passed in the data
+ * parameter. If one of those is the signing key and validates the new
+ * certificate, then mark the new certificate as being ok to link.
+ *
+ * Returns 0 if the new certificate was accepted, -ENOKEY if we
+ * couldn't find a matching parent certificate in the trusted list,
+ * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
+ * unsupported crypto, or some other error if there is a matching certificate
+ * but the signature check cannot be performed.
+ */
+int restrict_link_by_key_or_keyring(struct key *dest_keyring,
+ const struct key_type *type,
+ const union key_payload *payload,
+ struct key *trusted)
+{
+ return key_or_keyring_common(dest_keyring, type, payload, trusted,
+ false);
+}
+
+/**
+ * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of
+ * public keys using the restrict_key information stored in the ring.
+ * @dest_keyring: Keyring being linked to.
+ * @type: The type of key being added.
+ * @payload: The payload of the new key.
+ * @trusted: A key or ring of keys that can be used to vouch for the new cert.
+ *
+ * Check the new certificate against the key or keys passed in the data
+ * parameter and against the keys already linked to the destination keyring. If
+ * one of those is the signing key and validates the new certificate, then mark
+ * the new certificate as being ok to link.
+ *
+ * Returns 0 if the new certificate was accepted, -ENOKEY if we
+ * couldn't find a matching parent certificate in the trusted list,
+ * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
+ * unsupported crypto, or some other error if there is a matching certificate
+ * but the signature check cannot be performed.
+ */
+int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring,
+ const struct key_type *type,
+ const union key_payload *payload,
+ struct key *trusted)
+{
+ return key_or_keyring_common(dest_keyring, type, payload, trusted,
+ true);
+}