aboutsummaryrefslogtreecommitdiff
path: root/drivers/base/transport_class.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/base/transport_class.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'drivers/base/transport_class.c')
-rw-r--r--drivers/base/transport_class.c284
1 files changed, 284 insertions, 0 deletions
diff --git a/drivers/base/transport_class.c b/drivers/base/transport_class.c
new file mode 100644
index 000000000..ccc86206e
--- /dev/null
+++ b/drivers/base/transport_class.c
@@ -0,0 +1,284 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * transport_class.c - implementation of generic transport classes
+ * using attribute_containers
+ *
+ * Copyright (c) 2005 - James Bottomley <James.Bottomley@steeleye.com>
+ *
+ * The basic idea here is to allow any "device controller" (which
+ * would most often be a Host Bus Adapter to use the services of one
+ * or more tranport classes for performing transport specific
+ * services. Transport specific services are things that the generic
+ * command layer doesn't want to know about (speed settings, line
+ * condidtioning, etc), but which the user might be interested in.
+ * Thus, the HBA's use the routines exported by the transport classes
+ * to perform these functions. The transport classes export certain
+ * values to the user via sysfs using attribute containers.
+ *
+ * Note: because not every HBA will care about every transport
+ * attribute, there's a many to one relationship that goes like this:
+ *
+ * transport class<-----attribute container<----class device
+ *
+ * Usually the attribute container is per-HBA, but the design doesn't
+ * mandate that. Although most of the services will be specific to
+ * the actual external storage connection used by the HBA, the generic
+ * transport class is framed entirely in terms of generic devices to
+ * allow it to be used by any physical HBA in the system.
+ */
+#include <linux/export.h>
+#include <linux/attribute_container.h>
+#include <linux/transport_class.h>
+
+static int transport_remove_classdev(struct attribute_container *cont,
+ struct device *dev,
+ struct device *classdev);
+
+/**
+ * transport_class_register - register an initial transport class
+ *
+ * @tclass: a pointer to the transport class structure to be initialised
+ *
+ * The transport class contains an embedded class which is used to
+ * identify it. The caller should initialise this structure with
+ * zeros and then generic class must have been initialised with the
+ * actual transport class unique name. There's a macro
+ * DECLARE_TRANSPORT_CLASS() to do this (declared classes still must
+ * be registered).
+ *
+ * Returns 0 on success or error on failure.
+ */
+int transport_class_register(struct transport_class *tclass)
+{
+ return class_register(&tclass->class);
+}
+EXPORT_SYMBOL_GPL(transport_class_register);
+
+/**
+ * transport_class_unregister - unregister a previously registered class
+ *
+ * @tclass: The transport class to unregister
+ *
+ * Must be called prior to deallocating the memory for the transport
+ * class.
+ */
+void transport_class_unregister(struct transport_class *tclass)
+{
+ class_unregister(&tclass->class);
+}
+EXPORT_SYMBOL_GPL(transport_class_unregister);
+
+static int anon_transport_dummy_function(struct transport_container *tc,
+ struct device *dev,
+ struct device *cdev)
+{
+ /* do nothing */
+ return 0;
+}
+
+/**
+ * anon_transport_class_register - register an anonymous class
+ *
+ * @atc: The anon transport class to register
+ *
+ * The anonymous transport class contains both a transport class and a
+ * container. The idea of an anonymous class is that it never
+ * actually has any device attributes associated with it (and thus
+ * saves on container storage). So it can only be used for triggering
+ * events. Use prezero and then use DECLARE_ANON_TRANSPORT_CLASS() to
+ * initialise the anon transport class storage.
+ */
+int anon_transport_class_register(struct anon_transport_class *atc)
+{
+ int error;
+ atc->container.class = &atc->tclass.class;
+ attribute_container_set_no_classdevs(&atc->container);
+ error = attribute_container_register(&atc->container);
+ if (error)
+ return error;
+ atc->tclass.setup = anon_transport_dummy_function;
+ atc->tclass.remove = anon_transport_dummy_function;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(anon_transport_class_register);
+
+/**
+ * anon_transport_class_unregister - unregister an anon class
+ *
+ * @atc: Pointer to the anon transport class to unregister
+ *
+ * Must be called prior to deallocating the memory for the anon
+ * transport class.
+ */
+void anon_transport_class_unregister(struct anon_transport_class *atc)
+{
+ if (unlikely(attribute_container_unregister(&atc->container)))
+ BUG();
+}
+EXPORT_SYMBOL_GPL(anon_transport_class_unregister);
+
+static int transport_setup_classdev(struct attribute_container *cont,
+ struct device *dev,
+ struct device *classdev)
+{
+ struct transport_class *tclass = class_to_transport_class(cont->class);
+ struct transport_container *tcont = attribute_container_to_transport_container(cont);
+
+ if (tclass->setup)
+ tclass->setup(tcont, dev, classdev);
+
+ return 0;
+}
+
+/**
+ * transport_setup_device - declare a new dev for transport class association but don't make it visible yet.
+ * @dev: the generic device representing the entity being added
+ *
+ * Usually, dev represents some component in the HBA system (either
+ * the HBA itself or a device remote across the HBA bus). This
+ * routine is simply a trigger point to see if any set of transport
+ * classes wishes to associate with the added device. This allocates
+ * storage for the class device and initialises it, but does not yet
+ * add it to the system or add attributes to it (you do this with
+ * transport_add_device). If you have no need for a separate setup
+ * and add operations, use transport_register_device (see
+ * transport_class.h).
+ */
+
+void transport_setup_device(struct device *dev)
+{
+ attribute_container_add_device(dev, transport_setup_classdev);
+}
+EXPORT_SYMBOL_GPL(transport_setup_device);
+
+static int transport_add_class_device(struct attribute_container *cont,
+ struct device *dev,
+ struct device *classdev)
+{
+ int error = attribute_container_add_class_device(classdev);
+ struct transport_container *tcont =
+ attribute_container_to_transport_container(cont);
+
+ if (!error && tcont->statistics)
+ error = sysfs_create_group(&classdev->kobj, tcont->statistics);
+
+ return error;
+}
+
+
+/**
+ * transport_add_device - declare a new dev for transport class association
+ *
+ * @dev: the generic device representing the entity being added
+ *
+ * Usually, dev represents some component in the HBA system (either
+ * the HBA itself or a device remote across the HBA bus). This
+ * routine is simply a trigger point used to add the device to the
+ * system and register attributes for it.
+ */
+int transport_add_device(struct device *dev)
+{
+ return attribute_container_device_trigger_safe(dev,
+ transport_add_class_device,
+ transport_remove_classdev);
+}
+EXPORT_SYMBOL_GPL(transport_add_device);
+
+static int transport_configure(struct attribute_container *cont,
+ struct device *dev,
+ struct device *cdev)
+{
+ struct transport_class *tclass = class_to_transport_class(cont->class);
+ struct transport_container *tcont = attribute_container_to_transport_container(cont);
+
+ if (tclass->configure)
+ tclass->configure(tcont, dev, cdev);
+
+ return 0;
+}
+
+/**
+ * transport_configure_device - configure an already set up device
+ *
+ * @dev: generic device representing device to be configured
+ *
+ * The idea of configure is simply to provide a point within the setup
+ * process to allow the transport class to extract information from a
+ * device after it has been setup. This is used in SCSI because we
+ * have to have a setup device to begin using the HBA, but after we
+ * send the initial inquiry, we use configure to extract the device
+ * parameters. The device need not have been added to be configured.
+ */
+void transport_configure_device(struct device *dev)
+{
+ attribute_container_device_trigger(dev, transport_configure);
+}
+EXPORT_SYMBOL_GPL(transport_configure_device);
+
+static int transport_remove_classdev(struct attribute_container *cont,
+ struct device *dev,
+ struct device *classdev)
+{
+ struct transport_container *tcont =
+ attribute_container_to_transport_container(cont);
+ struct transport_class *tclass = class_to_transport_class(cont->class);
+
+ if (tclass->remove)
+ tclass->remove(tcont, dev, classdev);
+
+ if (tclass->remove != anon_transport_dummy_function) {
+ if (tcont->statistics)
+ sysfs_remove_group(&classdev->kobj, tcont->statistics);
+ attribute_container_class_device_del(classdev);
+ }
+
+ return 0;
+}
+
+
+/**
+ * transport_remove_device - remove the visibility of a device
+ *
+ * @dev: generic device to remove
+ *
+ * This call removes the visibility of the device (to the user from
+ * sysfs), but does not destroy it. To eliminate a device entirely
+ * you must also call transport_destroy_device. If you don't need to
+ * do remove and destroy as separate operations, use
+ * transport_unregister_device() (see transport_class.h) which will
+ * perform both calls for you.
+ */
+void transport_remove_device(struct device *dev)
+{
+ attribute_container_device_trigger(dev, transport_remove_classdev);
+}
+EXPORT_SYMBOL_GPL(transport_remove_device);
+
+static void transport_destroy_classdev(struct attribute_container *cont,
+ struct device *dev,
+ struct device *classdev)
+{
+ struct transport_class *tclass = class_to_transport_class(cont->class);
+
+ if (tclass->remove != anon_transport_dummy_function)
+ put_device(classdev);
+}
+
+
+/**
+ * transport_destroy_device - destroy a removed device
+ *
+ * @dev: device to eliminate from the transport class.
+ *
+ * This call triggers the elimination of storage associated with the
+ * transport classdev. Note: all it really does is relinquish a
+ * reference to the classdev. The memory will not be freed until the
+ * last reference goes to zero. Note also that the classdev retains a
+ * reference count on dev, so dev too will remain for as long as the
+ * transport class device remains around.
+ */
+void transport_destroy_device(struct device *dev)
+{
+ attribute_container_remove_device(dev, transport_destroy_classdev);
+}
+EXPORT_SYMBOL_GPL(transport_destroy_device);