aboutsummaryrefslogtreecommitdiff
path: root/drivers/block/paride/Transition-notes
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/block/paride/Transition-notes
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'drivers/block/paride/Transition-notes')
-rw-r--r--drivers/block/paride/Transition-notes128
1 files changed, 128 insertions, 0 deletions
diff --git a/drivers/block/paride/Transition-notes b/drivers/block/paride/Transition-notes
new file mode 100644
index 000000000..70374907c
--- /dev/null
+++ b/drivers/block/paride/Transition-notes
@@ -0,0 +1,128 @@
+Lemma 1:
+ If ps_tq is scheduled, ps_tq_active is 1. ps_tq_int() can be called
+ only when ps_tq_active is 1.
+Proof: All assignments to ps_tq_active and all scheduling of ps_tq happen
+ under ps_spinlock. There are three places where that can happen:
+ one in ps_set_intr() (A) and two in ps_tq_int() (B and C).
+ Consider the sequnce of these events. A can not be preceded by
+ anything except B, since it is under if (!ps_tq_active) under
+ ps_spinlock. C is always preceded by B, since we can't reach it
+ other than through B and we don't drop ps_spinlock between them.
+ IOW, the sequence is A?(BA|BC|B)*. OTOH, number of B can not exceed
+ the sum of numbers of A and C, since each call of ps_tq_int() is
+ the result of ps_tq execution. Therefore, the sequence starts with
+ A and each B is preceded by either A or C. Moments when we enter
+ ps_tq_int() are sandwiched between {A,C} and B in that sequence,
+ since at any time number of B can not exceed the number of these
+ moments which, in turn, can not exceed the number of A and C.
+ In other words, the sequence of events is (A or C set ps_tq_active to
+ 1 and schedule ps_tq, ps_tq is executed, ps_tq_int() is entered,
+ B resets ps_tq_active)*.
+
+
+consider the following area:
+ * in do_pd_request1(): to calls of pi_do_claimed() and return in
+ case when pd_req is NULL.
+ * in next_request(): to call of do_pd_request1()
+ * in do_pd_read(): to call of ps_set_intr()
+ * in do_pd_read_start(): to calls of pi_do_claimed(), next_request()
+and ps_set_intr()
+ * in do_pd_read_drq(): to calls of pi_do_claimed() and next_request()
+ * in do_pd_write(): to call of ps_set_intr()
+ * in do_pd_write_start(): to calls of pi_do_claimed(), next_request()
+and ps_set_intr()
+ * in do_pd_write_done(): to calls of pi_do_claimed() and next_request()
+ * in ps_set_intr(): to check for ps_tq_active and to scheduling
+ ps_tq if ps_tq_active was 0.
+ * in ps_tq_int(): from the moment when we get ps_spinlock() to the
+ return, call of con() or scheduling ps_tq.
+ * in pi_schedule_claimed() when called from pi_do_claimed() called from
+ pd.c, everything until returning 1 or setting or setting ->claim_cont
+ on the path that returns 0
+ * in pi_do_claimed() when called from pd.c, everything until the call
+ of pi_do_claimed() plus the everything until the call of cont() if
+ pi_do_claimed() has returned 1.
+ * in pi_wake_up() called for PIA that belongs to pd.c, everything from
+ the moment when pi_spinlock has been acquired.
+
+Lemma 2:
+ 1) at any time at most one thread of execution can be in that area or
+ be preempted there.
+ 2) When there is such a thread, pd_busy is set or pd_lock is held by
+ that thread.
+ 3) When there is such a thread, ps_tq_active is 0 or ps_spinlock is
+ held by that thread.
+ 4) When there is such a thread, all PIA belonging to pd.c have NULL
+ ->claim_cont or pi_spinlock is held by thread in question.
+
+Proof: consider the first moment when the above is not true.
+
+(1) can become not true if some thread enters that area while another is there.
+ a) do_pd_request1() can be called from next_request() or do_pd_request()
+ In the first case the thread was already in the area. In the second,
+ the thread was holding pd_lock and found pd_busy not set, which would
+ mean that (2) was already not true.
+ b) ps_set_intr() and pi_schedule_claimed() can be called only from the
+ area.
+ c) pi_do_claimed() is called by pd.c only from the area.
+ d) ps_tq_int() can enter the area only when the thread is holding
+ ps_spinlock and ps_tq_active is 1 (due to Lemma 1). It means that
+ (3) was already not true.
+ e) do_pd_{read,write}* could be called only from the area. The only
+ case that needs consideration is call from pi_wake_up() and there
+ we would have to be called for the PIA that got ->claimed_cont
+ from pd.c. That could happen only if pi_do_claimed() had been
+ called from pd.c for that PIA, which happens only for PIA belonging
+ to pd.c.
+ f) pi_wake_up() can enter the area only when the thread is holding
+ pi_spinlock and ->claimed_cont is non-NULL for PIA belonging to
+ pd.c. It means that (4) was already not true.
+
+(2) can become not true only when pd_lock is released by the thread in question.
+ Indeed, pd_busy is reset only in the area and thread that resets
+ it is holding pd_lock. The only place within the area where we
+ release pd_lock is in pd_next_buf() (called from within the area).
+ But that code does not reset pd_busy, so pd_busy would have to be
+ 0 when pd_next_buf() had acquired pd_lock. If it become 0 while
+ we were acquiring the lock, (1) would be already false, since
+ the thread that had reset it would be in the area simulateously.
+ If it was 0 before we tried to acquire pd_lock, (2) would be
+ already false.
+
+For similar reasons, (3) can become not true only when ps_spinlock is released
+by the thread in question. However, all such places within the area are right
+after resetting ps_tq_active to 0.
+
+(4) is done the same way - all places where we release pi_spinlock within
+the area are either after resetting ->claimed_cont to NULL while holding
+pi_spinlock, or after not tocuhing ->claimed_cont since acquiring pi_spinlock
+also in the area. The only place where ->claimed_cont is made non-NULL is
+in the area, under pi_spinlock and we do not release it until after leaving
+the area.
+
+QED.
+
+
+Corollary 1: ps_tq_active can be killed. Indeed, the only place where we
+check its value is in ps_set_intr() and if it had been non-zero at that
+point, we would have violated either (2.1) (if it was set while ps_set_intr()
+was acquiring ps_spinlock) or (2.3) (if it was set when we started to
+acquire ps_spinlock).
+
+Corollary 2: ps_spinlock can be killed. Indeed, Lemma 1 and Lemma 2 show
+that the only possible contention is between scheduling ps_tq followed by
+immediate release of spinlock and beginning of execution of ps_tq on
+another CPU.
+
+Corollary 3: assignment to pd_busy in do_pd_read_start() and do_pd_write_start()
+can be killed. Indeed, we are not holding pd_lock and thus pd_busy is already
+1 here.
+
+Corollary 4: in ps_tq_int() uses of con can be replaced with uses of
+ps_continuation, since the latter is changed only from the area.
+We don't need to reset it to NULL, since we are guaranteed that there
+will be a call of ps_set_intr() before we look at ps_continuation again.
+We can remove the check for ps_continuation being NULL for the same
+reason - the value is guaranteed to be set by the last ps_set_intr() and
+we never pass it NULL. Assignements in the beginning of ps_set_intr()
+can be taken to callers as long as they remain within the area.