aboutsummaryrefslogtreecommitdiff
path: root/drivers/clk/qcom/Kconfig
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/clk/qcom/Kconfig
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'drivers/clk/qcom/Kconfig')
-rw-r--r--drivers/clk/qcom/Kconfig855
1 files changed, 855 insertions, 0 deletions
diff --git a/drivers/clk/qcom/Kconfig b/drivers/clk/qcom/Kconfig
new file mode 100644
index 000000000..70d43f0a8
--- /dev/null
+++ b/drivers/clk/qcom/Kconfig
@@ -0,0 +1,855 @@
+# SPDX-License-Identifier: GPL-2.0-only
+config KRAIT_CLOCKS
+ bool
+ select KRAIT_L2_ACCESSORS
+
+config QCOM_GDSC
+ bool
+ select PM_GENERIC_DOMAINS if PM
+
+config QCOM_RPMCC
+ bool
+
+menuconfig COMMON_CLK_QCOM
+ tristate "Support for Qualcomm's clock controllers"
+ depends on OF
+ depends on ARCH_QCOM || COMPILE_TEST
+ select RATIONAL
+ select REGMAP_MMIO
+ select RESET_CONTROLLER
+
+if COMMON_CLK_QCOM
+
+config QCOM_A53PLL
+ tristate "MSM8916 A53 PLL"
+ help
+ Support for the A53 PLL on MSM8916 devices. It provides
+ the CPU with frequencies above 1GHz.
+ Say Y if you want to support higher CPU frequencies on MSM8916
+ devices.
+
+config QCOM_A7PLL
+ tristate "A7 PLL driver for SDX55 and SDX65"
+ help
+ Support for the A7 PLL on SDX55 and SDX65 devices. It provides the CPU with
+ frequencies above 1GHz.
+ Say Y if you want to support higher CPU frequencies on SDX55 and SDX65
+ devices.
+
+config QCOM_CLK_APCS_MSM8916
+ tristate "MSM8916 APCS Clock Controller"
+ depends on QCOM_APCS_IPC || COMPILE_TEST
+ help
+ Support for the APCS Clock Controller on msm8916 devices. The
+ APCS is managing the mux and divider which feeds the CPUs.
+ Say Y if you want to support CPU frequency scaling on devices
+ such as msm8916.
+
+config QCOM_CLK_APCC_MSM8996
+ tristate "MSM8996 CPU Clock Controller"
+ select QCOM_KRYO_L2_ACCESSORS
+ depends on ARM64
+ help
+ Support for the CPU clock controller on msm8996 devices.
+ Say Y if you want to support CPU clock scaling using CPUfreq
+ drivers for dynamic power management.
+
+config QCOM_CLK_APCS_SDX55
+ tristate "SDX55 and SDX65 APCS Clock Controller"
+ depends on QCOM_APCS_IPC || COMPILE_TEST
+ help
+ Support for the APCS Clock Controller on SDX55, SDX65 platforms. The
+ APCS is managing the mux and divider which feeds the CPUs.
+ Say Y if you want to support CPU frequency scaling on devices
+ such as SDX55, SDX65.
+
+config QCOM_CLK_RPM
+ tristate "RPM based Clock Controller"
+ depends on MFD_QCOM_RPM
+ select QCOM_RPMCC
+ help
+ The RPM (Resource Power Manager) is a dedicated hardware engine for
+ managing the shared SoC resources in order to keep the lowest power
+ profile. It communicates with other hardware subsystems via shared
+ memory and accepts clock requests, aggregates the requests and turns
+ the clocks on/off or scales them on demand.
+ Say Y if you want to support the clocks exposed by the RPM on
+ platforms such as apq8064, msm8660, msm8960 etc.
+
+config QCOM_CLK_SMD_RPM
+ tristate "RPM over SMD based Clock Controller"
+ depends on QCOM_SMD_RPM
+ select QCOM_RPMCC
+ help
+ The RPM (Resource Power Manager) is a dedicated hardware engine for
+ managing the shared SoC resources in order to keep the lowest power
+ profile. It communicates with other hardware subsystems via shared
+ memory and accepts clock requests, aggregates the requests and turns
+ the clocks on/off or scales them on demand.
+ Say Y if you want to support the clocks exposed by the RPM on
+ platforms such as apq8016, apq8084, msm8974 etc.
+
+config QCOM_CLK_RPMH
+ tristate "RPMh Clock Driver"
+ depends on QCOM_RPMH
+ help
+ RPMh manages shared resources on some Qualcomm Technologies, Inc.
+ SoCs. It accepts requests from other hardware subsystems via RSC.
+ Say Y if you want to support the clocks exposed by RPMh on
+ platforms such as SDM845.
+
+config APQ_GCC_8084
+ tristate "APQ8084 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on apq8084 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, SD/eMMC, SATA, PCIe, etc.
+
+config APQ_MMCC_8084
+ tristate "APQ8084 Multimedia Clock Controller"
+ select APQ_GCC_8084
+ select QCOM_GDSC
+ help
+ Support for the multimedia clock controller on apq8084 devices.
+ Say Y if you want to support multimedia devices such as display,
+ graphics, video encode/decode, camera, etc.
+
+config IPQ_APSS_PLL
+ tristate "IPQ APSS PLL"
+ help
+ Support for APSS PLL on ipq devices. The APSS PLL is the main
+ clock that feeds the CPUs on ipq based devices.
+ Say Y if you want to support CPU frequency scaling on ipq based
+ devices.
+
+config IPQ_APSS_6018
+ tristate "IPQ APSS Clock Controller"
+ select IPQ_APSS_PLL
+ depends on QCOM_APCS_IPC || COMPILE_TEST
+ help
+ Support for APSS clock controller on IPQ platforms. The
+ APSS clock controller manages the Mux and enable block that feeds the
+ CPUs.
+ Say Y if you want to support CPU frequency scaling on
+ ipq based devices.
+
+config IPQ_GCC_4019
+ tristate "IPQ4019 Global Clock Controller"
+ help
+ Support for the global clock controller on ipq4019 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, SD/eMMC, etc.
+
+config IPQ_GCC_6018
+ tristate "IPQ6018 Global Clock Controller"
+ help
+ Support for global clock controller on ipq6018 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, SD/eMMC, etc. Select this for the root clock
+ of ipq6018.
+
+config IPQ_GCC_806X
+ tristate "IPQ806x Global Clock Controller"
+ help
+ Support for the global clock controller on ipq806x devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, SD/eMMC, etc.
+
+config IPQ_LCC_806X
+ tristate "IPQ806x LPASS Clock Controller"
+ select IPQ_GCC_806X
+ help
+ Support for the LPASS clock controller on ipq806x devices.
+ Say Y if you want to use audio devices such as i2s, pcm,
+ S/PDIF, etc.
+
+config IPQ_GCC_8074
+ tristate "IPQ8074 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for global clock controller on ipq8074 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, SD/eMMC, etc. Select this for the root clock
+ of ipq8074.
+
+config MSM_GCC_8660
+ tristate "MSM8660 Global Clock Controller"
+ help
+ Support for the global clock controller on msm8660 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, SD/eMMC, etc.
+
+config MSM_GCC_8909
+ tristate "MSM8909 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on msm8909 devices.
+ Say Y if you want to use devices such as UART, SPI, I2C, USB,
+ SD/eMMC, display, graphics, camera etc.
+
+config MSM_GCC_8916
+ tristate "MSM8916 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on msm8916 devices.
+ Say Y if you want to use devices such as UART, SPI i2c, USB,
+ SD/eMMC, display, graphics, camera etc.
+
+config MSM_GCC_8939
+ tristate "MSM8939 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on msm8939 devices.
+ Say Y if you want to use devices such as UART, SPI i2c, USB,
+ SD/eMMC, display, graphics, camera etc.
+
+config MSM_GCC_8960
+ tristate "APQ8064/MSM8960 Global Clock Controller"
+ help
+ Support for the global clock controller on apq8064/msm8960 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, SD/eMMC, SATA, PCIe, etc.
+
+config MSM_LCC_8960
+ tristate "APQ8064/MSM8960 LPASS Clock Controller"
+ select MSM_GCC_8960
+ help
+ Support for the LPASS clock controller on apq8064/msm8960 devices.
+ Say Y if you want to use audio devices such as i2s, pcm,
+ SLIMBus, etc.
+
+config MDM_GCC_9607
+ tristate "MDM9607 Global Clock Controller"
+ help
+ Support for the global clock controller on mdm9607 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ I2C, USB, SD/eMMC, etc.
+
+config MDM_GCC_9615
+ tristate "MDM9615 Global Clock Controller"
+ help
+ Support for the global clock controller on mdm9615 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, SD/eMMC, etc.
+
+config MDM_LCC_9615
+ tristate "MDM9615 LPASS Clock Controller"
+ select MDM_GCC_9615
+ help
+ Support for the LPASS clock controller on mdm9615 devices.
+ Say Y if you want to use audio devices such as i2s, pcm,
+ SLIMBus, etc.
+
+config MSM_MMCC_8960
+ tristate "MSM8960 Multimedia Clock Controller"
+ select MSM_GCC_8960
+ help
+ Support for the multimedia clock controller on msm8960 devices.
+ Say Y if you want to support multimedia devices such as display,
+ graphics, video encode/decode, camera, etc.
+
+config MSM_GCC_8953
+ tristate "MSM8953 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on msm8953 devices.
+ Say Y if you want to use devices such as UART, SPI i2c, USB,
+ SD/eMMC, display, graphics, camera etc.
+
+config MSM_GCC_8974
+ tristate "MSM8974 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on msm8974 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, SD/eMMC, SATA, PCIe, etc.
+
+config MSM_MMCC_8974
+ tristate "MSM8974 Multimedia Clock Controller"
+ select MSM_GCC_8974
+ select QCOM_GDSC
+ help
+ Support for the multimedia clock controller on msm8974 devices.
+ Say Y if you want to support multimedia devices such as display,
+ graphics, video encode/decode, camera, etc.
+
+config MSM_GCC_8976
+ tristate "MSM8956/76 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on msm8956/76 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, SD/eMMC, SATA, PCIe, etc.
+
+config MSM_MMCC_8994
+ tristate "MSM8994 Multimedia Clock Controller"
+ select MSM_GCC_8994
+ select QCOM_GDSC
+ help
+ Support for the multimedia clock controller on msm8994 devices.
+ Say Y if you want to support multimedia devices such as display,
+ graphics, video encode/decode, camera, etc.
+
+config MSM_GCC_8994
+ tristate "MSM8994 Global Clock Controller"
+ help
+ Support for the global clock controller on msm8994 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, UFS, SD/eMMC, PCIe, etc.
+
+config MSM_GCC_8996
+ tristate "MSM8996 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on msm8996 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, UFS, SD/eMMC, PCIe, etc.
+
+config MSM_MMCC_8996
+ tristate "MSM8996 Multimedia Clock Controller"
+ select MSM_GCC_8996
+ select QCOM_GDSC
+ help
+ Support for the multimedia clock controller on msm8996 devices.
+ Say Y if you want to support multimedia devices such as display,
+ graphics, video encode/decode, camera, etc.
+
+config MSM_GCC_8998
+ tristate "MSM8998 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on msm8998 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2c, USB, UFS, SD/eMMC, PCIe, etc.
+
+config MSM_GPUCC_8998
+ tristate "MSM8998 Graphics Clock Controller"
+ select MSM_GCC_8998
+ select QCOM_GDSC
+ help
+ Support for the graphics clock controller on MSM8998 devices.
+ Say Y if you want to support graphics controller devices and
+ functionality such as 3D graphics.
+
+config MSM_MMCC_8998
+ tristate "MSM8998 Multimedia Clock Controller"
+ select MSM_GCC_8998
+ select QCOM_GDSC
+ help
+ Support for the multimedia clock controller on msm8998 devices.
+ Say Y if you want to support multimedia devices such as display,
+ graphics, video encode/decode, camera, etc.
+
+config QCM_GCC_2290
+ tristate "QCM2290 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on QCM2290 devices.
+ Say Y if you want to use multimedia devices or peripheral
+ devices such as UART, SPI, I2C, USB, SD/eMMC etc.
+
+config QCM_DISPCC_2290
+ tristate "QCM2290 Display Clock Controller"
+ select QCM_GCC_2290
+ help
+ Support for the display clock controller on Qualcomm Technologies, Inc
+ QCM2290 devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen.
+
+config QCS_GCC_404
+ tristate "QCS404 Global Clock Controller"
+ help
+ Support for the global clock controller on QCS404 devices.
+ Say Y if you want to use multimedia devices or peripheral
+ devices such as UART, SPI, I2C, USB, SD/eMMC, PCIe etc.
+
+config SC_CAMCC_7180
+ tristate "SC7180 Camera Clock Controller"
+ select SC_GCC_7180
+ help
+ Support for the camera clock controller on Qualcomm Technologies, Inc
+ SC7180 devices.
+ Say Y if you want to support camera devices and functionality such as
+ capturing pictures.
+
+config SC_CAMCC_7280
+ tristate "SC7280 Camera Clock Controller"
+ select SC_GCC_7280
+ help
+ Support for the camera clock controller on Qualcomm Technologies, Inc
+ SC7280 devices.
+ Say Y if you want to support camera devices and functionality such as
+ capturing pictures.
+
+config SC_DISPCC_7180
+ tristate "SC7180 Display Clock Controller"
+ select SC_GCC_7180
+ help
+ Support for the display clock controller on Qualcomm Technologies, Inc
+ SC7180 devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen.
+
+config SC_DISPCC_7280
+ tristate "SC7280 Display Clock Controller"
+ select SC_GCC_7280
+ help
+ Support for the display clock controller on Qualcomm Technologies, Inc.
+ SC7280 devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen.
+
+config SC_DISPCC_8280XP
+ tristate "SC8280XP Display Clock Controller"
+ select SC_GCC_8280XP
+ help
+ Support for the two display clock controllers on Qualcomm
+ Technologies, Inc. SC8280XP devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen.
+
+config SC_GCC_7180
+ tristate "SC7180 Global Clock Controller"
+ select QCOM_GDSC
+ depends on COMMON_CLK_QCOM
+ help
+ Support for the global clock controller on SC7180 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ I2C, USB, UFS, SDCC, etc.
+
+config SC_GCC_7280
+ tristate "SC7280 Global Clock Controller"
+ select QCOM_GDSC
+ depends on COMMON_CLK_QCOM
+ help
+ Support for the global clock controller on SC7280 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ I2C, USB, UFS, SDCC, PCIe etc.
+
+config SC_GCC_8180X
+ tristate "SC8180X Global Clock Controller"
+ select QCOM_GDSC
+ depends on COMMON_CLK_QCOM
+ help
+ Support for the global clock controller on SC8180X devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ I2C, USB, UFS, SDCC, etc.
+
+config SC_GCC_8280XP
+ tristate "SC8280XP Global Clock Controller"
+ select QCOM_GDSC
+ depends on COMMON_CLK_QCOM
+ help
+ Support for the global clock controller on SC8280XP devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ I2C, USB, UFS, SDCC, etc.
+
+config SC_GPUCC_7180
+ tristate "SC7180 Graphics Clock Controller"
+ select SC_GCC_7180
+ help
+ Support for the graphics clock controller on SC7180 devices.
+ Say Y if you want to support graphics controller devices and
+ functionality such as 3D graphics.
+
+config SC_GPUCC_7280
+ tristate "SC7280 Graphics Clock Controller"
+ select SC_GCC_7280
+ help
+ Support for the graphics clock controller on SC7280 devices.
+ Say Y if you want to support graphics controller devices and
+ functionality such as 3D graphics.
+
+config SC_GPUCC_8280XP
+ tristate "SC8280XP Graphics Clock Controller"
+ select SC_GCC_8280XP
+ help
+ Support for the graphics clock controller on SC8280XP devices.
+ Say Y if you want to support graphics controller devices and
+ functionality such as 3D graphics.
+
+config SC_LPASSCC_7280
+ tristate "SC7280 Low Power Audio Subsystem (LPASS) Clock Controller"
+ select SC_GCC_7280
+ help
+ Support for the LPASS clock controller on SC7280 devices.
+ Say Y if you want to use the LPASS branch clocks of the LPASS clock
+ controller to reset the LPASS subsystem.
+
+config SC_LPASS_CORECC_7180
+ tristate "SC7180 LPASS Core Clock Controller"
+ select SC_GCC_7180
+ help
+ Support for the LPASS(Low Power Audio Subsystem) core clock controller
+ on SC7180 devices.
+ Say Y if you want to use LPASS clocks and power domains of the LPASS
+ core clock controller.
+
+config SC_LPASS_CORECC_7280
+ tristate "SC7280 LPASS Core & Audio Clock Controller"
+ select SC_GCC_7280
+ select QCOM_GDSC
+ help
+ Support for the LPASS(Low Power Audio Subsystem) core and audio clock
+ controller on SC7280 devices.
+ Say Y if you want to use LPASS clocks and power domains of the LPASS
+ core clock controller.
+
+config SC_MSS_7180
+ tristate "SC7180 Modem Clock Controller"
+ select SC_GCC_7180
+ help
+ Support for the Modem Subsystem clock controller on Qualcomm
+ Technologies, Inc on SC7180 devices.
+ Say Y if you want to use the Modem branch clocks of the Modem
+ subsystem clock controller to reset the MSS subsystem.
+
+config SC_VIDEOCC_7180
+ tristate "SC7180 Video Clock Controller"
+ select SC_GCC_7180
+ help
+ Support for the video clock controller on SC7180 devices.
+ Say Y if you want to support video devices and functionality such as
+ video encode and decode.
+
+config SC_VIDEOCC_7280
+ tristate "SC7280 Video Clock Controller"
+ select SC_GCC_7280
+ help
+ Support for the video clock controller on SC7280 devices.
+ Say Y if you want to support video devices and functionality such as
+ video encode and decode.
+
+config SDM_CAMCC_845
+ tristate "SDM845 Camera Clock Controller"
+ select SDM_GCC_845
+ help
+ Support for the camera clock controller on SDM845 devices.
+ Say Y if you want to support camera devices and camera functionality.
+
+config SDM_GCC_660
+ tristate "SDM660 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SDM660 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2C, USB, UFS, SDDC, PCIe, etc.
+
+config SDM_MMCC_660
+ tristate "SDM660 Multimedia Clock Controller"
+ select SDM_GCC_660
+ select QCOM_GDSC
+ help
+ Support for the multimedia clock controller on SDM660 devices.
+ Say Y if you want to support multimedia devices such as display,
+ graphics, video encode/decode, camera, etc.
+
+config SDM_GPUCC_660
+ tristate "SDM660 Graphics Clock Controller"
+ select SDM_GCC_660
+ select QCOM_GDSC
+ help
+ Support for the graphics clock controller on SDM630/636/660 devices.
+ Say Y if you want to support graphics controller devices and
+ functionality such as 3D graphics
+
+config QCS_TURING_404
+ tristate "QCS404 Turing Clock Controller"
+ help
+ Support for the Turing Clock Controller on QCS404, provides clocks
+ and resets for the Turing subsystem.
+
+config QCS_Q6SSTOP_404
+ tristate "QCS404 Q6SSTOP Clock Controller"
+ select QCS_GCC_404
+ help
+ Support for the Q6SSTOP clock controller on QCS404 devices.
+ Say Y if you want to use the Q6SSTOP branch clocks of the WCSS clock
+ controller to reset the Q6SSTOP subsystem.
+
+config SDM_GCC_845
+ tristate "SDM845/SDM670 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SDM845 and SDM670 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2C, USB, UFS, SDDC, PCIe, etc.
+
+config SDM_GPUCC_845
+ tristate "SDM845 Graphics Clock Controller"
+ select SDM_GCC_845
+ help
+ Support for the graphics clock controller on SDM845 devices.
+ Say Y if you want to support graphics controller devices and
+ functionality such as 3D graphics.
+
+config SDM_VIDEOCC_845
+ tristate "SDM845 Video Clock Controller"
+ select SDM_GCC_845
+ select QCOM_GDSC
+ help
+ Support for the video clock controller on SDM845 devices.
+ Say Y if you want to support video devices and functionality such as
+ video encode and decode.
+
+config SDM_DISPCC_845
+ tristate "SDM845 Display Clock Controller"
+ select SDM_GCC_845
+ help
+ Support for the display clock controller on Qualcomm Technologies, Inc
+ SDM845 devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen.
+
+config SDM_LPASSCC_845
+ tristate "SDM845 Low Power Audio Subsystem (LPAAS) Clock Controller"
+ select SDM_GCC_845
+ help
+ Support for the LPASS clock controller on SDM845 devices.
+ Say Y if you want to use the LPASS branch clocks of the LPASS clock
+ controller to reset the LPASS subsystem.
+
+config SDX_GCC_55
+ tristate "SDX55 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SDX55 devices.
+ Say Y if you want to use peripheral devices such as UART,
+ SPI, I2C, USB, SD/UFS, PCIe etc.
+
+config SDX_GCC_65
+ tristate "SDX65 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SDX65 devices.
+ Say Y if you want to use peripheral devices such as UART,
+ SPI, I2C, USB, SD/UFS, PCIe etc.
+
+config SM_CAMCC_8250
+ tristate "SM8250 Camera Clock Controller"
+ select SM_GCC_8250
+ help
+ Support for the camera clock controller on SM8250 devices.
+ Say Y if you want to support camera devices and camera functionality.
+
+config SM_CAMCC_8450
+ tristate "SM8450 Camera Clock Controller"
+ select SM_GCC_8450
+ help
+ Support for the camera clock controller on SM8450 devices.
+ Say Y if you want to support camera devices and camera functionality.
+
+config SM_DISPCC_6115
+ tristate "SM6115 Display Clock Controller"
+ depends on SM_GCC_6115
+ help
+ Support for the display clock controller on Qualcomm Technologies, Inc
+ SM6115/SM4250 devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen
+
+config SM_DISPCC_6125
+ tristate "SM6125 Display Clock Controller"
+ depends on SM_GCC_6125
+ help
+ Support for the display clock controller on Qualcomm Technologies, Inc
+ SM6125 devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen
+
+config SM_DISPCC_8250
+ tristate "SM8150/SM8250/SM8350 Display Clock Controller"
+ depends on SM_GCC_8150 || SM_GCC_8250 || SM_GCC_8350
+ help
+ Support for the display clock controller on Qualcomm Technologies, Inc
+ SM8150/SM8250/SM8350 devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen.
+
+config SM_DISPCC_6350
+ tristate "SM6350 Display Clock Controller"
+ depends on SM_GCC_6350
+ help
+ Support for the display clock controller on Qualcomm Technologies, Inc
+ SM6350 devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen.
+
+config SM_DISPCC_6375
+ tristate "SM6375 Display Clock Controller"
+ depends on SM_GCC_6375
+ help
+ Support for the display clock controller on Qualcomm Technologies, Inc
+ SM6375 devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen.
+
+config SM_DISPCC_8450
+ tristate "SM8450 Display Clock Controller"
+ depends on SM_GCC_8450
+ help
+ Support for the display clock controller on Qualcomm Technologies, Inc
+ SM8450 devices.
+ Say Y if you want to support display devices and functionality such as
+ splash screen.
+
+config SM_GCC_6115
+ tristate "SM6115 and SM4250 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SM6115 and SM4250 devices.
+ Say Y if you want to use peripheral devices such as UART, SPI,
+ i2C, USB, UFS, SDDC, PCIe, etc.
+
+config SM_GCC_6125
+ tristate "SM6125 Global Clock Controller"
+ help
+ Support for the global clock controller on SM6125 devices.
+ Say Y if you want to use peripheral devices such as UART,
+ SPI, I2C, USB, SD/UFS, PCIe etc.
+
+config SM_GCC_6350
+ tristate "SM6350 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SM6350 devices.
+ Say Y if you want to use peripheral devices such as UART,
+ SPI, I2C, USB, SD/UFS, PCIe etc.
+
+config SM_GCC_6375
+ tristate "SM6375 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SM6375 devices.
+ Say Y if you want to use peripheral devices such as UART,
+ SPI, I2C, USB, SD/UFS etc.
+
+config SM_GCC_8150
+ tristate "SM8150 Global Clock Controller"
+ help
+ Support for the global clock controller on SM8150 devices.
+ Say Y if you want to use peripheral devices such as UART,
+ SPI, I2C, USB, SD/UFS, PCIe etc.
+
+config SM_GCC_8250
+ tristate "SM8250 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SM8250 devices.
+ Say Y if you want to use peripheral devices such as UART,
+ SPI, I2C, USB, SD/UFS, PCIe etc.
+
+config SM_GCC_8350
+ tristate "SM8350 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SM8350 devices.
+ Say Y if you want to use peripheral devices such as UART,
+ SPI, I2C, USB, SD/UFS, PCIe etc.
+
+config SM_GCC_8450
+ tristate "SM8450 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SM8450 devices.
+ Say Y if you want to use peripheral devices such as UART,
+ SPI, I2C, USB, SD/UFS, PCIe etc.
+
+config SM_GCC_8550
+ tristate "SM8550 Global Clock Controller"
+ select QCOM_GDSC
+ help
+ Support for the global clock controller on SM8550 devices.
+ Say Y if you want to use peripheral devices such as UART,
+ SPI, I2C, USB, SD/UFS, PCIe etc.
+
+config SM_GPUCC_6350
+ tristate "SM6350 Graphics Clock Controller"
+ select SM_GCC_6350
+ help
+ Support for the graphics clock controller on SM6350 devices.
+ Say Y if you want to support graphics controller devices and
+ functionality such as 3D graphics.
+
+config SM_GPUCC_8150
+ tristate "SM8150 Graphics Clock Controller"
+ select SM_GCC_8150
+ help
+ Support for the graphics clock controller on SM8150 devices.
+ Say Y if you want to support graphics controller devices and
+ functionality such as 3D graphics.
+
+config SM_GPUCC_8250
+ tristate "SM8250 Graphics Clock Controller"
+ select SM_GCC_8250
+ help
+ Support for the graphics clock controller on SM8250 devices.
+ Say Y if you want to support graphics controller devices and
+ functionality such as 3D graphics.
+
+config SM_GPUCC_8350
+ tristate "SM8350 Graphics Clock Controller"
+ select SM_GCC_8350
+ help
+ Support for the graphics clock controller on SM8350 devices.
+ Say Y if you want to support graphics controller devices and
+ functionality such as 3D graphics.
+
+config SM_VIDEOCC_8150
+ tristate "SM8150 Video Clock Controller"
+ select SM_GCC_8150
+ select QCOM_GDSC
+ help
+ Support for the video clock controller on SM8150 devices.
+ Say Y if you want to support video devices and functionality such as
+ video encode and decode.
+
+config SM_VIDEOCC_8250
+ tristate "SM8250 Video Clock Controller"
+ select SM_GCC_8250
+ select QCOM_GDSC
+ help
+ Support for the video clock controller on SM8250 devices.
+ Say Y if you want to support video devices and functionality such as
+ video encode and decode.
+
+config SPMI_PMIC_CLKDIV
+ tristate "SPMI PMIC clkdiv Support"
+ depends on SPMI || COMPILE_TEST
+ help
+ This driver supports the clkdiv functionality on the Qualcomm
+ Technologies, Inc. SPMI PMIC. It configures the frequency of
+ clkdiv outputs of the PMIC. These clocks are typically wired
+ through alternate functions on GPIO pins.
+
+config QCOM_HFPLL
+ tristate "High-Frequency PLL (HFPLL) Clock Controller"
+ help
+ Support for the high-frequency PLLs present on Qualcomm devices.
+ Say Y if you want to support CPU frequency scaling on devices
+ such as MSM8974, APQ8084, etc.
+
+config KPSS_XCC
+ tristate "KPSS Clock Controller"
+ help
+ Support for the Krait ACC and GCC clock controllers. Say Y
+ if you want to support CPU frequency scaling on devices such
+ as MSM8960, APQ8064, etc.
+
+config KRAITCC
+ tristate "Krait Clock Controller"
+ depends on ARM
+ select KRAIT_CLOCKS
+ help
+ Support for the Krait CPU clocks on Qualcomm devices.
+ Say Y if you want to support CPU frequency scaling.
+
+config CLK_GFM_LPASS_SM8250
+ tristate "SM8250 GFM LPASS Clocks"
+ help
+ Support for the Glitch Free Mux (GFM) Low power audio
+ subsystem (LPASS) clocks found on SM8250 SoCs.
+
+endif