diff options
| author | 2023-02-21 18:24:12 -0800 | |
|---|---|---|
| committer | 2023-02-21 18:24:12 -0800 | |
| commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
| tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/cpufreq/Kconfig | |
| download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip | |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'drivers/cpufreq/Kconfig')
| -rw-r--r-- | drivers/cpufreq/Kconfig | 315 |
1 files changed, 315 insertions, 0 deletions
diff --git a/drivers/cpufreq/Kconfig b/drivers/cpufreq/Kconfig new file mode 100644 index 000000000..2c839bd2b --- /dev/null +++ b/drivers/cpufreq/Kconfig @@ -0,0 +1,315 @@ +# SPDX-License-Identifier: GPL-2.0-only +menu "CPU Frequency scaling" + +config CPU_FREQ + bool "CPU Frequency scaling" + help + CPU Frequency scaling allows you to change the clock speed of + CPUs on the fly. This is a nice method to save power, because + the lower the CPU clock speed, the less power the CPU consumes. + + Note that this driver doesn't automatically change the CPU + clock speed, you need to either enable a dynamic cpufreq governor + (see below) after boot, or use a userspace tool. + + For details, take a look at + <file:Documentation/admin-guide/pm/cpufreq.rst>. + + If in doubt, say N. + +if CPU_FREQ + +config CPU_FREQ_GOV_ATTR_SET + bool + +config CPU_FREQ_GOV_COMMON + select CPU_FREQ_GOV_ATTR_SET + select IRQ_WORK + bool + +config CPU_FREQ_STAT + bool "CPU frequency transition statistics" + help + Export CPU frequency statistics information through sysfs. + + If in doubt, say N. + +choice + prompt "Default CPUFreq governor" + default CPU_FREQ_DEFAULT_GOV_USERSPACE if ARM_SA1110_CPUFREQ + default CPU_FREQ_DEFAULT_GOV_SCHEDUTIL if ARM64 || ARM + default CPU_FREQ_DEFAULT_GOV_SCHEDUTIL if X86_INTEL_PSTATE && SMP + default CPU_FREQ_DEFAULT_GOV_PERFORMANCE + help + This option sets which CPUFreq governor shall be loaded at + startup. If in doubt, use the default setting. + +config CPU_FREQ_DEFAULT_GOV_PERFORMANCE + bool "performance" + select CPU_FREQ_GOV_PERFORMANCE + help + Use the CPUFreq governor 'performance' as default. This sets + the frequency statically to the highest frequency supported by + the CPU. + +config CPU_FREQ_DEFAULT_GOV_POWERSAVE + bool "powersave" + select CPU_FREQ_GOV_POWERSAVE + help + Use the CPUFreq governor 'powersave' as default. This sets + the frequency statically to the lowest frequency supported by + the CPU. + +config CPU_FREQ_DEFAULT_GOV_USERSPACE + bool "userspace" + select CPU_FREQ_GOV_USERSPACE + help + Use the CPUFreq governor 'userspace' as default. This allows + you to set the CPU frequency manually or when a userspace + program shall be able to set the CPU dynamically without having + to enable the userspace governor manually. + +config CPU_FREQ_DEFAULT_GOV_ONDEMAND + bool "ondemand" + depends on !(X86_INTEL_PSTATE && SMP) + select CPU_FREQ_GOV_ONDEMAND + select CPU_FREQ_GOV_PERFORMANCE + help + Use the CPUFreq governor 'ondemand' as default. This allows + you to get a full dynamic frequency capable system by simply + loading your cpufreq low-level hardware driver. + Be aware that not all cpufreq drivers support the ondemand + governor. If unsure have a look at the help section of the + driver. Fallback governor will be the performance governor. + +config CPU_FREQ_DEFAULT_GOV_CONSERVATIVE + bool "conservative" + depends on !(X86_INTEL_PSTATE && SMP) + select CPU_FREQ_GOV_CONSERVATIVE + select CPU_FREQ_GOV_PERFORMANCE + help + Use the CPUFreq governor 'conservative' as default. This allows + you to get a full dynamic frequency capable system by simply + loading your cpufreq low-level hardware driver. + Be aware that not all cpufreq drivers support the conservative + governor. If unsure have a look at the help section of the + driver. Fallback governor will be the performance governor. + +config CPU_FREQ_DEFAULT_GOV_SCHEDUTIL + bool "schedutil" + depends on SMP + select CPU_FREQ_GOV_SCHEDUTIL + select CPU_FREQ_GOV_PERFORMANCE + help + Use the 'schedutil' CPUFreq governor by default. If unsure, + have a look at the help section of that governor. The fallback + governor will be 'performance'. + +endchoice + +config CPU_FREQ_GOV_PERFORMANCE + tristate "'performance' governor" + help + This cpufreq governor sets the frequency statically to the + highest available CPU frequency. + + To compile this driver as a module, choose M here: the + module will be called cpufreq_performance. + + If in doubt, say Y. + +config CPU_FREQ_GOV_POWERSAVE + tristate "'powersave' governor" + help + This cpufreq governor sets the frequency statically to the + lowest available CPU frequency. + + To compile this driver as a module, choose M here: the + module will be called cpufreq_powersave. + + If in doubt, say Y. + +config CPU_FREQ_GOV_USERSPACE + tristate "'userspace' governor for userspace frequency scaling" + help + Enable this cpufreq governor when you either want to set the + CPU frequency manually or when a userspace program shall + be able to set the CPU dynamically, like on LART + <http://www.lartmaker.nl/>. + + To compile this driver as a module, choose M here: the + module will be called cpufreq_userspace. + + If in doubt, say Y. + +config CPU_FREQ_GOV_ONDEMAND + tristate "'ondemand' cpufreq policy governor" + select CPU_FREQ_GOV_COMMON + help + 'ondemand' - This driver adds a dynamic cpufreq policy governor. + The governor does a periodic polling and + changes frequency based on the CPU utilization. + The support for this governor depends on CPU capability to + do fast frequency switching (i.e, very low latency frequency + transitions). + + To compile this driver as a module, choose M here: the + module will be called cpufreq_ondemand. + + For details, take a look at + <file:Documentation/admin-guide/pm/cpufreq.rst>. + + If in doubt, say N. + +config CPU_FREQ_GOV_CONSERVATIVE + tristate "'conservative' cpufreq governor" + depends on CPU_FREQ + select CPU_FREQ_GOV_COMMON + help + 'conservative' - this driver is rather similar to the 'ondemand' + governor both in its source code and its purpose, the difference is + its optimisation for better suitability in a battery powered + environment. The frequency is gracefully increased and decreased + rather than jumping to 100% when speed is required. + + If you have a desktop machine then you should really be considering + the 'ondemand' governor instead, however if you are using a laptop, + PDA or even an AMD64 based computer (due to the unacceptable + step-by-step latency issues between the minimum and maximum frequency + transitions in the CPU) you will probably want to use this governor. + + To compile this driver as a module, choose M here: the + module will be called cpufreq_conservative. + + For details, take a look at + <file:Documentation/admin-guide/pm/cpufreq.rst>. + + If in doubt, say N. + +config CPU_FREQ_GOV_SCHEDUTIL + bool "'schedutil' cpufreq policy governor" + depends on CPU_FREQ && SMP + select CPU_FREQ_GOV_ATTR_SET + select IRQ_WORK + help + This governor makes decisions based on the utilization data provided + by the scheduler. It sets the CPU frequency to be proportional to + the utilization/capacity ratio coming from the scheduler. If the + utilization is frequency-invariant, the new frequency is also + proportional to the maximum available frequency. If that is not the + case, it is proportional to the current frequency of the CPU. The + frequency tipping point is at utilization/capacity equal to 80% in + both cases. + + If in doubt, say N. + +comment "CPU frequency scaling drivers" + +config CPUFREQ_DT + tristate "Generic DT based cpufreq driver" + depends on HAVE_CLK && OF + select CPUFREQ_DT_PLATDEV + select PM_OPP + help + This adds a generic DT based cpufreq driver for frequency management. + It supports both uniprocessor (UP) and symmetric multiprocessor (SMP) + systems. + + If in doubt, say N. + +config CPUFREQ_DT_PLATDEV + bool + help + This adds a generic DT based cpufreq platdev driver for frequency + management. This creates a 'cpufreq-dt' platform device, on the + supported platforms. + + If in doubt, say N. + +if X86 +source "drivers/cpufreq/Kconfig.x86" +endif + +if ARM || ARM64 +source "drivers/cpufreq/Kconfig.arm" +endif + +if PPC32 || PPC64 +source "drivers/cpufreq/Kconfig.powerpc" +endif + +if IA64 +config IA64_ACPI_CPUFREQ + tristate "ACPI Processor P-States driver" + depends on ACPI_PROCESSOR + help + This driver adds a CPUFreq driver which utilizes the ACPI + Processor Performance States. + + If in doubt, say N. +endif + +if MIPS +config BMIPS_CPUFREQ + tristate "BMIPS CPUfreq Driver" + help + This option adds a CPUfreq driver for BMIPS processors with + support for configurable CPU frequency. + + For now, BMIPS5 chips are supported (such as the Broadcom 7425). + + If in doubt, say N. + +config LOONGSON2_CPUFREQ + tristate "Loongson2 CPUFreq Driver" + depends on LEMOTE_MACH2F + help + This option adds a CPUFreq driver for loongson processors which + support software configurable cpu frequency. + + Loongson2F and its successors support this feature. + + If in doubt, say N. +endif + +if SPARC64 +config SPARC_US3_CPUFREQ + tristate "UltraSPARC-III CPU Frequency driver" + help + This adds the CPUFreq driver for UltraSPARC-III processors. + + If in doubt, say N. + +config SPARC_US2E_CPUFREQ + tristate "UltraSPARC-IIe CPU Frequency driver" + help + This adds the CPUFreq driver for UltraSPARC-IIe processors. + + If in doubt, say N. +endif + +if SUPERH +config SH_CPU_FREQ + tristate "SuperH CPU Frequency driver" + help + This adds the cpufreq driver for SuperH. Any CPU that supports + clock rate rounding through the clock framework can use this + driver. While it will make the kernel slightly larger, this is + harmless for CPUs that don't support rate rounding. The driver + will also generate a notice in the boot log before disabling + itself if the CPU in question is not capable of rate rounding. + + If unsure, say N. +endif + +config QORIQ_CPUFREQ + tristate "CPU frequency scaling driver for Freescale QorIQ SoCs" + depends on OF && COMMON_CLK + depends on PPC_E500MC || SOC_LS1021A || ARCH_LAYERSCAPE || COMPILE_TEST + select CLK_QORIQ + help + This adds the CPUFreq driver support for Freescale QorIQ SoCs + which are capable of changing the CPU's frequency dynamically. + +endif +endmenu |
