diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h')
-rw-r--r-- | drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h | 555 |
1 files changed, 555 insertions, 0 deletions
diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h new file mode 100644 index 000000000..dac29fe6c --- /dev/null +++ b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h @@ -0,0 +1,555 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ +#include <asm/div64.h> + +#define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */ + +#define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */ + +#define SHIFTED_2 (2 << SHIFT_AMOUNT) +#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */ + +/* ------------------------------------------------------------------------------- + * NEW TYPE - fINT + * ------------------------------------------------------------------------------- + * A variable of type fInt can be accessed in 3 ways using the dot (.) operator + * fInt A; + * A.full => The full number as it is. Generally not easy to read + * A.partial.real => Only the integer portion + * A.partial.decimal => Only the fractional portion + */ +typedef union _fInt { + int full; + struct _partial { + unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/ + int real: 32 - SHIFT_AMOUNT; + } partial; +} fInt; + +/* ------------------------------------------------------------------------------- + * Function Declarations + * ------------------------------------------------------------------------------- + */ +static fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */ +static fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */ +static fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */ +static int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */ + +static fInt fNegate(fInt); /* Returns -1 * input fInt value */ +static fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */ +static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */ +static fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */ +static fInt fDivide (fInt A, fInt B); /* Returns A/B */ +static fInt fGetSquare(fInt); /* Returns the square of a fInt number */ +static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */ + +static int uAbs(int); /* Returns the Absolute value of the Int */ +static int uPow(int base, int exponent); /* Returns base^exponent an INT */ + +static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */ +static bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */ +static bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */ + +static fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */ +static fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */ + +/* Fuse decoding functions + * ------------------------------------------------------------------------------------- + */ +static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength); +static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength); +static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength); + +/* Internal Support Functions - Use these ONLY for testing or adding to internal functions + * ------------------------------------------------------------------------------------- + * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons. + */ +static fInt Divide (int, int); /* Divide two INTs and return result as FINT */ +static fInt fNegate(fInt); + +static int uGetScaledDecimal (fInt); /* Internal function */ +static int GetReal (fInt A); /* Internal function */ + +/* ------------------------------------------------------------------------------------- + * TROUBLESHOOTING INFORMATION + * ------------------------------------------------------------------------------------- + * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767) + * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767) + * 3) fMultiply - OutputOutOfRangeException: + * 4) fGetSquare - OutputOutOfRangeException: + * 5) fDivide - DivideByZeroException + * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number + */ + +/* ------------------------------------------------------------------------------------- + * START OF CODE + * ------------------------------------------------------------------------------------- + */ +static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ +{ + uint32_t i; + bool bNegated = false; + + fInt fPositiveOne = ConvertToFraction(1); + fInt fZERO = ConvertToFraction(0); + + fInt lower_bound = Divide(78, 10000); + fInt solution = fPositiveOne; /*Starting off with baseline of 1 */ + fInt error_term; + + static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; + static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; + + if (GreaterThan(fZERO, exponent)) { + exponent = fNegate(exponent); + bNegated = true; + } + + while (GreaterThan(exponent, lower_bound)) { + for (i = 0; i < 11; i++) { + if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) { + exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000)); + solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000)); + } + } + } + + error_term = fAdd(fPositiveOne, exponent); + + solution = fMultiply(solution, error_term); + + if (bNegated) + solution = fDivide(fPositiveOne, solution); + + return solution; +} + +static fInt fNaturalLog(fInt value) +{ + uint32_t i; + fInt upper_bound = Divide(8, 1000); + fInt fNegativeOne = ConvertToFraction(-1); + fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */ + fInt error_term; + + static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; + static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; + + while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) { + for (i = 0; i < 10; i++) { + if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) { + value = fDivide(value, GetScaledFraction(k_array[i], 10000)); + solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000)); + } + } + } + + error_term = fAdd(fNegativeOne, value); + + return (fAdd(solution, error_term)); +} + +static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength) +{ + fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); + fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); + + fInt f_decoded_value; + + f_decoded_value = fDivide(f_fuse_value, f_bit_max_value); + f_decoded_value = fMultiply(f_decoded_value, f_range); + f_decoded_value = fAdd(f_decoded_value, f_min); + + return f_decoded_value; +} + + +static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength) +{ + fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); + fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); + + fInt f_CONSTANT_NEG13 = ConvertToFraction(-13); + fInt f_CONSTANT1 = ConvertToFraction(1); + + fInt f_decoded_value; + + f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1); + f_decoded_value = fNaturalLog(f_decoded_value); + f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13)); + f_decoded_value = fAdd(f_decoded_value, f_average); + + return f_decoded_value; +} + +static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength) +{ + fInt fLeakage; + fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); + + fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse)); + fLeakage = fDivide(fLeakage, f_bit_max_value); + fLeakage = fExponential(fLeakage); + fLeakage = fMultiply(fLeakage, f_min); + + return fLeakage; +} + +static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */ +{ + fInt temp; + + if (X <= MAX) + temp.full = (X << SHIFT_AMOUNT); + else + temp.full = 0; + + return temp; +} + +static fInt fNegate(fInt X) +{ + fInt CONSTANT_NEGONE = ConvertToFraction(-1); + return (fMultiply(X, CONSTANT_NEGONE)); +} + +static fInt Convert_ULONG_ToFraction(uint32_t X) +{ + fInt temp; + + if (X <= MAX) + temp.full = (X << SHIFT_AMOUNT); + else + temp.full = 0; + + return temp; +} + +static fInt GetScaledFraction(int X, int factor) +{ + int times_shifted, factor_shifted; + bool bNEGATED; + fInt fValue; + + times_shifted = 0; + factor_shifted = 0; + bNEGATED = false; + + if (X < 0) { + X = -1*X; + bNEGATED = true; + } + + if (factor < 0) { + factor = -1*factor; + bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */ + } + + if ((X > MAX) || factor > MAX) { + if ((X/factor) <= MAX) { + while (X > MAX) { + X = X >> 1; + times_shifted++; + } + + while (factor > MAX) { + factor = factor >> 1; + factor_shifted++; + } + } else { + fValue.full = 0; + return fValue; + } + } + + if (factor == 1) + return ConvertToFraction(X); + + fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor)); + + fValue.full = fValue.full << times_shifted; + fValue.full = fValue.full >> factor_shifted; + + return fValue; +} + +/* Addition using two fInts */ +static fInt fAdd (fInt X, fInt Y) +{ + fInt Sum; + + Sum.full = X.full + Y.full; + + return Sum; +} + +/* Addition using two fInts */ +static fInt fSubtract (fInt X, fInt Y) +{ + fInt Difference; + + Difference.full = X.full - Y.full; + + return Difference; +} + +static bool Equal(fInt A, fInt B) +{ + if (A.full == B.full) + return true; + else + return false; +} + +static bool GreaterThan(fInt A, fInt B) +{ + if (A.full > B.full) + return true; + else + return false; +} + +static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ +{ + fInt Product; + int64_t tempProduct; + + /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/ + /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION + bool X_LessThanOne, Y_LessThanOne; + + X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0); + Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0); + + if (X_LessThanOne && Y_LessThanOne) { + Product.full = X.full * Y.full; + return Product + }*/ + + tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */ + tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */ + Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */ + + return Product; +} + +static fInt fDivide (fInt X, fInt Y) +{ + fInt fZERO, fQuotient; + int64_t longlongX, longlongY; + + fZERO = ConvertToFraction(0); + + if (Equal(Y, fZERO)) + return fZERO; + + longlongX = (int64_t)X.full; + longlongY = (int64_t)Y.full; + + longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */ + + div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */ + + fQuotient.full = (int)longlongX; + return fQuotient; +} + +static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/ +{ + fInt fullNumber, scaledDecimal, scaledReal; + + scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */ + + scaledDecimal.full = uGetScaledDecimal(A); + + fullNumber = fAdd(scaledDecimal,scaledReal); + + return fullNumber.full; +} + +static fInt fGetSquare(fInt A) +{ + return fMultiply(A,A); +} + +/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */ +static fInt fSqrt(fInt num) +{ + fInt F_divide_Fprime, Fprime; + fInt test; + fInt twoShifted; + int seed, counter, error; + fInt x_new, x_old, C, y; + + fInt fZERO = ConvertToFraction(0); + + /* (0 > num) is the same as (num < 0), i.e., num is negative */ + + if (GreaterThan(fZERO, num) || Equal(fZERO, num)) + return fZERO; + + C = num; + + if (num.partial.real > 3000) + seed = 60; + else if (num.partial.real > 1000) + seed = 30; + else if (num.partial.real > 100) + seed = 10; + else + seed = 2; + + counter = 0; + + if (Equal(num, fZERO)) /*Square Root of Zero is zero */ + return fZERO; + + twoShifted = ConvertToFraction(2); + x_new = ConvertToFraction(seed); + + do { + counter++; + + x_old.full = x_new.full; + + test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */ + y = fSubtract(test, C); /*y = f(x) = x^2 - C; */ + + Fprime = fMultiply(twoShifted, x_old); + F_divide_Fprime = fDivide(y, Fprime); + + x_new = fSubtract(x_old, F_divide_Fprime); + + error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old); + + if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/ + return x_new; + + } while (uAbs(error) > 0); + + return (x_new); +} + +static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) +{ + fInt *pRoots = &Roots[0]; + fInt temp, root_first, root_second; + fInt f_CONSTANT10, f_CONSTANT100; + + f_CONSTANT100 = ConvertToFraction(100); + f_CONSTANT10 = ConvertToFraction(10); + + while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) { + A = fDivide(A, f_CONSTANT10); + B = fDivide(B, f_CONSTANT10); + C = fDivide(C, f_CONSTANT10); + } + + temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */ + temp = fMultiply(temp, C); /* root = 4*A*C */ + temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */ + temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */ + + root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */ + root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */ + + root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ + root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ + + root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ + root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ + + *(pRoots + 0) = root_first; + *(pRoots + 1) = root_second; +} + +/* ----------------------------------------------------------------------------- + * SUPPORT FUNCTIONS + * ----------------------------------------------------------------------------- + */ + +/* Conversion Functions */ +static int GetReal (fInt A) +{ + return (A.full >> SHIFT_AMOUNT); +} + +static fInt Divide (int X, int Y) +{ + fInt A, B, Quotient; + + A.full = X << SHIFT_AMOUNT; + B.full = Y << SHIFT_AMOUNT; + + Quotient = fDivide(A, B); + + return Quotient; +} + +static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */ +{ + int dec[PRECISION]; + int i, scaledDecimal = 0, tmp = A.partial.decimal; + + for (i = 0; i < PRECISION; i++) { + dec[i] = tmp / (1 << SHIFT_AMOUNT); + tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]); + tmp *= 10; + scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i); + } + + return scaledDecimal; +} + +static int uPow(int base, int power) +{ + if (power == 0) + return 1; + else + return (base)*uPow(base, power - 1); +} + +static int uAbs(int X) +{ + if (X < 0) + return (X * -1); + else + return X; +} + +static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term) +{ + fInt solution; + + solution = fDivide(A, fStepSize); + solution.partial.decimal = 0; /*All fractional digits changes to 0 */ + + if (error_term) + solution.partial.real += 1; /*Error term of 1 added */ + + solution = fMultiply(solution, fStepSize); + solution = fAdd(solution, fStepSize); + + return solution; +} + |