diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/gpu/drm/i915/gem/i915_gem_pm.c | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'drivers/gpu/drm/i915/gem/i915_gem_pm.c')
-rw-r--r-- | drivers/gpu/drm/i915/gem/i915_gem_pm.c | 256 |
1 files changed, 256 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gem/i915_gem_pm.c b/drivers/gpu/drm/i915/gem/i915_gem_pm.c new file mode 100644 index 000000000..0d812f4d7 --- /dev/null +++ b/drivers/gpu/drm/i915/gem/i915_gem_pm.c @@ -0,0 +1,256 @@ +/* + * SPDX-License-Identifier: MIT + * + * Copyright © 2019 Intel Corporation + */ + +#include "gem/i915_gem_pm.h" +#include "gem/i915_gem_ttm_pm.h" +#include "gt/intel_gt.h" +#include "gt/intel_gt_pm.h" +#include "gt/intel_gt_requests.h" + +#include "i915_driver.h" +#include "i915_drv.h" + +#if defined(CONFIG_X86) +#include <asm/smp.h> +#else +#define wbinvd_on_all_cpus() \ + pr_warn(DRIVER_NAME ": Missing cache flush in %s\n", __func__) +#endif + +void i915_gem_suspend(struct drm_i915_private *i915) +{ + struct intel_gt *gt; + unsigned int i; + + GEM_TRACE("%s\n", dev_name(i915->drm.dev)); + + intel_wakeref_auto(&i915->runtime_pm.userfault_wakeref, 0); + flush_workqueue(i915->wq); + + /* + * We have to flush all the executing contexts to main memory so + * that they can saved in the hibernation image. To ensure the last + * context image is coherent, we have to switch away from it. That + * leaves the i915->kernel_context still active when + * we actually suspend, and its image in memory may not match the GPU + * state. Fortunately, the kernel_context is disposable and we do + * not rely on its state. + */ + for_each_gt(gt, i915, i) + intel_gt_suspend_prepare(gt); + + i915_gem_drain_freed_objects(i915); +} + +static int lmem_restore(struct drm_i915_private *i915, u32 flags) +{ + struct intel_memory_region *mr; + int ret = 0, id; + + for_each_memory_region(mr, i915, id) { + if (mr->type == INTEL_MEMORY_LOCAL) { + ret = i915_ttm_restore_region(mr, flags); + if (ret) + break; + } + } + + return ret; +} + +static int lmem_suspend(struct drm_i915_private *i915, u32 flags) +{ + struct intel_memory_region *mr; + int ret = 0, id; + + for_each_memory_region(mr, i915, id) { + if (mr->type == INTEL_MEMORY_LOCAL) { + ret = i915_ttm_backup_region(mr, flags); + if (ret) + break; + } + } + + return ret; +} + +static void lmem_recover(struct drm_i915_private *i915) +{ + struct intel_memory_region *mr; + int id; + + for_each_memory_region(mr, i915, id) + if (mr->type == INTEL_MEMORY_LOCAL) + i915_ttm_recover_region(mr); +} + +int i915_gem_backup_suspend(struct drm_i915_private *i915) +{ + int ret; + + /* Opportunistically try to evict unpinned objects */ + ret = lmem_suspend(i915, I915_TTM_BACKUP_ALLOW_GPU); + if (ret) + goto out_recover; + + i915_gem_suspend(i915); + + /* + * More objects may have become unpinned as requests were + * retired. Now try to evict again. The gt may be wedged here + * in which case we automatically fall back to memcpy. + * We allow also backing up pinned objects that have not been + * marked for early recover, and that may contain, for example, + * page-tables for the migrate context. + */ + ret = lmem_suspend(i915, I915_TTM_BACKUP_ALLOW_GPU | + I915_TTM_BACKUP_PINNED); + if (ret) + goto out_recover; + + /* + * Remaining objects are backed up using memcpy once we've stopped + * using the migrate context. + */ + ret = lmem_suspend(i915, I915_TTM_BACKUP_PINNED); + if (ret) + goto out_recover; + + return 0; + +out_recover: + lmem_recover(i915); + + return ret; +} + +void i915_gem_suspend_late(struct drm_i915_private *i915) +{ + struct drm_i915_gem_object *obj; + struct list_head *phases[] = { + &i915->mm.shrink_list, + &i915->mm.purge_list, + NULL + }, **phase; + struct intel_gt *gt; + unsigned long flags; + unsigned int i; + bool flush = false; + + /* + * Neither the BIOS, ourselves or any other kernel + * expects the system to be in execlists mode on startup, + * so we need to reset the GPU back to legacy mode. And the only + * known way to disable logical contexts is through a GPU reset. + * + * So in order to leave the system in a known default configuration, + * always reset the GPU upon unload and suspend. Afterwards we then + * clean up the GEM state tracking, flushing off the requests and + * leaving the system in a known idle state. + * + * Note that is of the upmost importance that the GPU is idle and + * all stray writes are flushed *before* we dismantle the backing + * storage for the pinned objects. + * + * However, since we are uncertain that resetting the GPU on older + * machines is a good idea, we don't - just in case it leaves the + * machine in an unusable condition. + */ + + for_each_gt(gt, i915, i) + intel_gt_suspend_late(gt); + + spin_lock_irqsave(&i915->mm.obj_lock, flags); + for (phase = phases; *phase; phase++) { + list_for_each_entry(obj, *phase, mm.link) { + if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) + flush |= (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0; + __start_cpu_write(obj); /* presume auto-hibernate */ + } + } + spin_unlock_irqrestore(&i915->mm.obj_lock, flags); + if (flush) + wbinvd_on_all_cpus(); +} + +int i915_gem_freeze(struct drm_i915_private *i915) +{ + /* Discard all purgeable objects, let userspace recover those as + * required after resuming. + */ + i915_gem_shrink_all(i915); + + return 0; +} + +int i915_gem_freeze_late(struct drm_i915_private *i915) +{ + struct drm_i915_gem_object *obj; + intel_wakeref_t wakeref; + + /* + * Called just before we write the hibernation image. + * + * We need to update the domain tracking to reflect that the CPU + * will be accessing all the pages to create and restore from the + * hibernation, and so upon restoration those pages will be in the + * CPU domain. + * + * To make sure the hibernation image contains the latest state, + * we update that state just before writing out the image. + * + * To try and reduce the hibernation image, we manually shrink + * the objects as well, see i915_gem_freeze() + */ + + with_intel_runtime_pm(&i915->runtime_pm, wakeref) + i915_gem_shrink(NULL, i915, -1UL, NULL, ~0); + i915_gem_drain_freed_objects(i915); + + wbinvd_on_all_cpus(); + list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) + __start_cpu_write(obj); + + return 0; +} + +void i915_gem_resume(struct drm_i915_private *i915) +{ + struct intel_gt *gt; + int ret, i, j; + + GEM_TRACE("%s\n", dev_name(i915->drm.dev)); + + ret = lmem_restore(i915, 0); + GEM_WARN_ON(ret); + + /* + * As we didn't flush the kernel context before suspend, we cannot + * guarantee that the context image is complete. So let's just reset + * it and start again. + */ + for_each_gt(gt, i915, i) + if (intel_gt_resume(gt)) + goto err_wedged; + + ret = lmem_restore(i915, I915_TTM_BACKUP_ALLOW_GPU); + GEM_WARN_ON(ret); + + return; + +err_wedged: + for_each_gt(gt, i915, j) { + if (!intel_gt_is_wedged(gt)) { + dev_err(i915->drm.dev, + "Failed to re-initialize GPU[%u], declaring it wedged!\n", + j); + intel_gt_set_wedged(gt); + } + + if (j == i) + break; + } +} |