aboutsummaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/gt/uc/intel_huc.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/gpu/drm/i915/gt/uc/intel_huc.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'drivers/gpu/drm/i915/gt/uc/intel_huc.c')
-rw-r--r--drivers/gpu/drm/i915/gt/uc/intel_huc.c538
1 files changed, 538 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gt/uc/intel_huc.c b/drivers/gpu/drm/i915/gt/uc/intel_huc.c
new file mode 100644
index 000000000..410905da8
--- /dev/null
+++ b/drivers/gpu/drm/i915/gt/uc/intel_huc.c
@@ -0,0 +1,538 @@
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2016-2019 Intel Corporation
+ */
+
+#include <linux/types.h>
+
+#include "gt/intel_gt.h"
+#include "intel_guc_reg.h"
+#include "intel_huc.h"
+#include "i915_drv.h"
+
+#include <linux/device/bus.h>
+#include <linux/mei_aux.h>
+
+/**
+ * DOC: HuC
+ *
+ * The HuC is a dedicated microcontroller for usage in media HEVC (High
+ * Efficiency Video Coding) operations. Userspace can directly use the firmware
+ * capabilities by adding HuC specific commands to batch buffers.
+ *
+ * The kernel driver is only responsible for loading the HuC firmware and
+ * triggering its security authentication, which is performed by the GuC on
+ * older platforms and by the GSC on newer ones. For the GuC to correctly
+ * perform the authentication, the HuC binary must be loaded before the GuC one.
+ * Loading the HuC is optional; however, not using the HuC might negatively
+ * impact power usage and/or performance of media workloads, depending on the
+ * use-cases.
+ * HuC must be reloaded on events that cause the WOPCM to lose its contents
+ * (S3/S4, FLR); GuC-authenticated HuC must also be reloaded on GuC/GT reset,
+ * while GSC-managed HuC will survive that.
+ *
+ * See https://github.com/intel/media-driver for the latest details on HuC
+ * functionality.
+ */
+
+/**
+ * DOC: HuC Memory Management
+ *
+ * Similarly to the GuC, the HuC can't do any memory allocations on its own,
+ * with the difference being that the allocations for HuC usage are handled by
+ * the userspace driver instead of the kernel one. The HuC accesses the memory
+ * via the PPGTT belonging to the context loaded on the VCS executing the
+ * HuC-specific commands.
+ */
+
+/*
+ * MEI-GSC load is an async process. The probing of the exposed aux device
+ * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
+ * on when the kernel schedules it. Unless something goes terribly wrong, we're
+ * guaranteed for this to happen during boot, so the big timeout is a safety net
+ * that we never expect to need.
+ * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
+ * and/or reset, this can take longer. Note that the kernel might schedule
+ * other work between the i915 init/resume and the MEI one, which can add to
+ * the delay.
+ */
+#define GSC_INIT_TIMEOUT_MS 10000
+#define PXP_INIT_TIMEOUT_MS 5000
+
+static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
+ enum i915_sw_fence_notify state)
+{
+ return NOTIFY_DONE;
+}
+
+static void __delayed_huc_load_complete(struct intel_huc *huc)
+{
+ if (!i915_sw_fence_done(&huc->delayed_load.fence))
+ i915_sw_fence_complete(&huc->delayed_load.fence);
+}
+
+static void delayed_huc_load_complete(struct intel_huc *huc)
+{
+ hrtimer_cancel(&huc->delayed_load.timer);
+ __delayed_huc_load_complete(huc);
+}
+
+static void __gsc_init_error(struct intel_huc *huc)
+{
+ huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
+ __delayed_huc_load_complete(huc);
+}
+
+static void gsc_init_error(struct intel_huc *huc)
+{
+ hrtimer_cancel(&huc->delayed_load.timer);
+ __gsc_init_error(huc);
+}
+
+static void gsc_init_done(struct intel_huc *huc)
+{
+ hrtimer_cancel(&huc->delayed_load.timer);
+
+ /* MEI-GSC init is done, now we wait for MEI-PXP to bind */
+ huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
+ if (!i915_sw_fence_done(&huc->delayed_load.fence))
+ hrtimer_start(&huc->delayed_load.timer,
+ ms_to_ktime(PXP_INIT_TIMEOUT_MS),
+ HRTIMER_MODE_REL);
+}
+
+static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
+{
+ struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
+
+ if (!intel_huc_is_authenticated(huc)) {
+ if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
+ drm_notice(&huc_to_gt(huc)->i915->drm,
+ "timed out waiting for MEI GSC init to load HuC\n");
+ else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
+ drm_notice(&huc_to_gt(huc)->i915->drm,
+ "timed out waiting for MEI PXP init to load HuC\n");
+ else
+ MISSING_CASE(huc->delayed_load.status);
+
+ __gsc_init_error(huc);
+ }
+
+ return HRTIMER_NORESTART;
+}
+
+static void huc_delayed_load_start(struct intel_huc *huc)
+{
+ ktime_t delay;
+
+ GEM_BUG_ON(intel_huc_is_authenticated(huc));
+
+ /*
+ * On resume we don't have to wait for MEI-GSC to be re-probed, but we
+ * do need to wait for MEI-PXP to reset & re-bind
+ */
+ switch (huc->delayed_load.status) {
+ case INTEL_HUC_WAITING_ON_GSC:
+ delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
+ break;
+ case INTEL_HUC_WAITING_ON_PXP:
+ delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
+ break;
+ default:
+ gsc_init_error(huc);
+ return;
+ }
+
+ /*
+ * This fence is always complete unless we're waiting for the
+ * GSC device to come up to load the HuC. We arm the fence here
+ * and complete it when we confirm that the HuC is loaded from
+ * the PXP bind callback.
+ */
+ GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
+ i915_sw_fence_fini(&huc->delayed_load.fence);
+ i915_sw_fence_reinit(&huc->delayed_load.fence);
+ i915_sw_fence_await(&huc->delayed_load.fence);
+ i915_sw_fence_commit(&huc->delayed_load.fence);
+
+ hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
+}
+
+static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
+{
+ struct device *dev = data;
+ struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
+ struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
+
+ if (!intf->adev || &intf->adev->aux_dev.dev != dev)
+ return 0;
+
+ switch (action) {
+ case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
+ gsc_init_done(huc);
+ break;
+
+ case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
+ case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
+ drm_info(&huc_to_gt(huc)->i915->drm,
+ "mei driver not bound, disabling HuC load\n");
+ gsc_init_error(huc);
+ break;
+ }
+
+ return 0;
+}
+
+void intel_huc_register_gsc_notifier(struct intel_huc *huc, struct bus_type *bus)
+{
+ int ret;
+
+ if (!intel_huc_is_loaded_by_gsc(huc))
+ return;
+
+ huc->delayed_load.nb.notifier_call = gsc_notifier;
+ ret = bus_register_notifier(bus, &huc->delayed_load.nb);
+ if (ret) {
+ drm_err(&huc_to_gt(huc)->i915->drm,
+ "failed to register GSC notifier\n");
+ huc->delayed_load.nb.notifier_call = NULL;
+ gsc_init_error(huc);
+ }
+}
+
+void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, struct bus_type *bus)
+{
+ if (!huc->delayed_load.nb.notifier_call)
+ return;
+
+ delayed_huc_load_complete(huc);
+
+ bus_unregister_notifier(bus, &huc->delayed_load.nb);
+ huc->delayed_load.nb.notifier_call = NULL;
+}
+
+static void delayed_huc_load_init(struct intel_huc *huc)
+{
+ /*
+ * Initialize fence to be complete as this is expected to be complete
+ * unless there is a delayed HuC load in progress.
+ */
+ i915_sw_fence_init(&huc->delayed_load.fence,
+ sw_fence_dummy_notify);
+ i915_sw_fence_commit(&huc->delayed_load.fence);
+
+ hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
+}
+
+static void delayed_huc_load_fini(struct intel_huc *huc)
+{
+ /*
+ * the fence is initialized in init_early, so we need to clean it up
+ * even if HuC loading is off.
+ */
+ delayed_huc_load_complete(huc);
+ i915_sw_fence_fini(&huc->delayed_load.fence);
+}
+
+static bool vcs_supported(struct intel_gt *gt)
+{
+ intel_engine_mask_t mask = gt->info.engine_mask;
+
+ /*
+ * We reach here from i915_driver_early_probe for the primary GT before
+ * its engine mask is set, so we use the device info engine mask for it;
+ * this means we're not taking VCS fusing into account, but if the
+ * primary GT supports VCS engines we expect at least one of them to
+ * remain unfused so we're fine.
+ * For other GTs we expect the GT-specific mask to be set before we
+ * call this function.
+ */
+ GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
+
+ if (gt_is_root(gt))
+ mask = RUNTIME_INFO(gt->i915)->platform_engine_mask;
+ else
+ mask = gt->info.engine_mask;
+
+ return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
+}
+
+void intel_huc_init_early(struct intel_huc *huc)
+{
+ struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
+ struct intel_gt *gt = huc_to_gt(huc);
+
+ intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC);
+
+ /*
+ * we always init the fence as already completed, even if HuC is not
+ * supported. This way we don't have to distinguish between HuC not
+ * supported/disabled or already loaded, and can focus on if the load
+ * is currently in progress (fence not complete) or not, which is what
+ * we care about for stalling userspace submissions.
+ */
+ delayed_huc_load_init(huc);
+
+ if (!vcs_supported(gt)) {
+ intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
+ return;
+ }
+
+ if (GRAPHICS_VER(i915) >= 11) {
+ huc->status.reg = GEN11_HUC_KERNEL_LOAD_INFO;
+ huc->status.mask = HUC_LOAD_SUCCESSFUL;
+ huc->status.value = HUC_LOAD_SUCCESSFUL;
+ } else {
+ huc->status.reg = HUC_STATUS2;
+ huc->status.mask = HUC_FW_VERIFIED;
+ huc->status.value = HUC_FW_VERIFIED;
+ }
+}
+
+#define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
+static int check_huc_loading_mode(struct intel_huc *huc)
+{
+ struct intel_gt *gt = huc_to_gt(huc);
+ bool fw_needs_gsc = intel_huc_is_loaded_by_gsc(huc);
+ bool hw_uses_gsc = false;
+
+ /*
+ * The fuse for HuC load via GSC is only valid on platforms that have
+ * GuC deprivilege.
+ */
+ if (HAS_GUC_DEPRIVILEGE(gt->i915))
+ hw_uses_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
+ GSC_LOADS_HUC;
+
+ if (fw_needs_gsc != hw_uses_gsc) {
+ drm_err(&gt->i915->drm,
+ "mismatch between HuC FW (%s) and HW (%s) load modes\n",
+ HUC_LOAD_MODE_STRING(fw_needs_gsc),
+ HUC_LOAD_MODE_STRING(hw_uses_gsc));
+ return -ENOEXEC;
+ }
+
+ /* make sure we can access the GSC via the mei driver if we need it */
+ if (!(IS_ENABLED(CONFIG_INTEL_MEI_PXP) && IS_ENABLED(CONFIG_INTEL_MEI_GSC)) &&
+ fw_needs_gsc) {
+ drm_info(&gt->i915->drm,
+ "Can't load HuC due to missing MEI modules\n");
+ return -EIO;
+ }
+
+ drm_dbg(&gt->i915->drm, "GSC loads huc=%s\n", str_yes_no(fw_needs_gsc));
+
+ return 0;
+}
+
+int intel_huc_init(struct intel_huc *huc)
+{
+ struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
+ int err;
+
+ err = check_huc_loading_mode(huc);
+ if (err)
+ goto out;
+
+ err = intel_uc_fw_init(&huc->fw);
+ if (err)
+ goto out;
+
+ intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
+
+ return 0;
+
+out:
+ intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
+ drm_info(&i915->drm, "HuC init failed with %d\n", err);
+ return err;
+}
+
+void intel_huc_fini(struct intel_huc *huc)
+{
+ /*
+ * the fence is initialized in init_early, so we need to clean it up
+ * even if HuC loading is off.
+ */
+ delayed_huc_load_fini(huc);
+
+ if (intel_uc_fw_is_loadable(&huc->fw))
+ intel_uc_fw_fini(&huc->fw);
+}
+
+void intel_huc_suspend(struct intel_huc *huc)
+{
+ if (!intel_uc_fw_is_loadable(&huc->fw))
+ return;
+
+ /*
+ * in the unlikely case that we're suspending before the GSC has
+ * completed its loading sequence, just stop waiting. We'll restart
+ * on resume.
+ */
+ delayed_huc_load_complete(huc);
+}
+
+int intel_huc_wait_for_auth_complete(struct intel_huc *huc)
+{
+ struct intel_gt *gt = huc_to_gt(huc);
+ int ret;
+
+ ret = __intel_wait_for_register(gt->uncore,
+ huc->status.reg,
+ huc->status.mask,
+ huc->status.value,
+ 2, 50, NULL);
+
+ /* mark the load process as complete even if the wait failed */
+ delayed_huc_load_complete(huc);
+
+ if (ret) {
+ drm_err(&gt->i915->drm, "HuC: Firmware not verified %d\n", ret);
+ intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
+ return ret;
+ }
+
+ intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
+ drm_info(&gt->i915->drm, "HuC authenticated\n");
+ return 0;
+}
+
+/**
+ * intel_huc_auth() - Authenticate HuC uCode
+ * @huc: intel_huc structure
+ *
+ * Called after HuC and GuC firmware loading during intel_uc_init_hw().
+ *
+ * This function invokes the GuC action to authenticate the HuC firmware,
+ * passing the offset of the RSA signature to intel_guc_auth_huc(). It then
+ * waits for up to 50ms for firmware verification ACK.
+ */
+int intel_huc_auth(struct intel_huc *huc)
+{
+ struct intel_gt *gt = huc_to_gt(huc);
+ struct intel_guc *guc = &gt->uc.guc;
+ int ret;
+
+ if (!intel_uc_fw_is_loaded(&huc->fw))
+ return -ENOEXEC;
+
+ /* GSC will do the auth */
+ if (intel_huc_is_loaded_by_gsc(huc))
+ return -ENODEV;
+
+ ret = i915_inject_probe_error(gt->i915, -ENXIO);
+ if (ret)
+ goto fail;
+
+ GEM_BUG_ON(intel_uc_fw_is_running(&huc->fw));
+
+ ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
+ if (ret) {
+ DRM_ERROR("HuC: GuC did not ack Auth request %d\n", ret);
+ goto fail;
+ }
+
+ /* Check authentication status, it should be done by now */
+ ret = intel_huc_wait_for_auth_complete(huc);
+ if (ret)
+ goto fail;
+
+ return 0;
+
+fail:
+ i915_probe_error(gt->i915, "HuC: Authentication failed %d\n", ret);
+ return ret;
+}
+
+bool intel_huc_is_authenticated(struct intel_huc *huc)
+{
+ struct intel_gt *gt = huc_to_gt(huc);
+ intel_wakeref_t wakeref;
+ u32 status = 0;
+
+ with_intel_runtime_pm(gt->uncore->rpm, wakeref)
+ status = intel_uncore_read(gt->uncore, huc->status.reg);
+
+ return (status & huc->status.mask) == huc->status.value;
+}
+
+/**
+ * intel_huc_check_status() - check HuC status
+ * @huc: intel_huc structure
+ *
+ * This function reads status register to verify if HuC
+ * firmware was successfully loaded.
+ *
+ * The return values match what is expected for the I915_PARAM_HUC_STATUS
+ * getparam.
+ */
+int intel_huc_check_status(struct intel_huc *huc)
+{
+ switch (__intel_uc_fw_status(&huc->fw)) {
+ case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
+ return -ENODEV;
+ case INTEL_UC_FIRMWARE_DISABLED:
+ return -EOPNOTSUPP;
+ case INTEL_UC_FIRMWARE_MISSING:
+ return -ENOPKG;
+ case INTEL_UC_FIRMWARE_ERROR:
+ return -ENOEXEC;
+ case INTEL_UC_FIRMWARE_INIT_FAIL:
+ return -ENOMEM;
+ case INTEL_UC_FIRMWARE_LOAD_FAIL:
+ return -EIO;
+ default:
+ break;
+ }
+
+ return intel_huc_is_authenticated(huc);
+}
+
+static bool huc_has_delayed_load(struct intel_huc *huc)
+{
+ return intel_huc_is_loaded_by_gsc(huc) &&
+ (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
+}
+
+void intel_huc_update_auth_status(struct intel_huc *huc)
+{
+ if (!intel_uc_fw_is_loadable(&huc->fw))
+ return;
+
+ if (intel_huc_is_authenticated(huc))
+ intel_uc_fw_change_status(&huc->fw,
+ INTEL_UC_FIRMWARE_RUNNING);
+ else if (huc_has_delayed_load(huc))
+ huc_delayed_load_start(huc);
+}
+
+/**
+ * intel_huc_load_status - dump information about HuC load status
+ * @huc: the HuC
+ * @p: the &drm_printer
+ *
+ * Pretty printer for HuC load status.
+ */
+void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
+{
+ struct intel_gt *gt = huc_to_gt(huc);
+ intel_wakeref_t wakeref;
+
+ if (!intel_huc_is_supported(huc)) {
+ drm_printf(p, "HuC not supported\n");
+ return;
+ }
+
+ if (!intel_huc_is_wanted(huc)) {
+ drm_printf(p, "HuC disabled\n");
+ return;
+ }
+
+ intel_uc_fw_dump(&huc->fw, p);
+
+ with_intel_runtime_pm(gt->uncore->rpm, wakeref)
+ drm_printf(p, "HuC status: 0x%08x\n",
+ intel_uncore_read(gt->uncore, huc->status.reg));
+}