diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/misc/mei/hw-txe.c | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'drivers/misc/mei/hw-txe.c')
-rw-r--r-- | drivers/misc/mei/hw-txe.c | 1256 |
1 files changed, 1256 insertions, 0 deletions
diff --git a/drivers/misc/mei/hw-txe.c b/drivers/misc/mei/hw-txe.c new file mode 100644 index 000000000..5d0f68b95 --- /dev/null +++ b/drivers/misc/mei/hw-txe.c @@ -0,0 +1,1256 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2013-2022, Intel Corporation. All rights reserved. + * Intel Management Engine Interface (Intel MEI) Linux driver + */ + +#include <linux/pci.h> +#include <linux/jiffies.h> +#include <linux/ktime.h> +#include <linux/delay.h> +#include <linux/kthread.h> +#include <linux/interrupt.h> +#include <linux/pm_runtime.h> + +#include <linux/mei.h> + +#include "mei_dev.h" +#include "hw-txe.h" +#include "client.h" +#include "hbm.h" + +#include "mei-trace.h" + +#define TXE_HBUF_DEPTH (PAYLOAD_SIZE / MEI_SLOT_SIZE) + +/** + * mei_txe_reg_read - Reads 32bit data from the txe device + * + * @base_addr: registers base address + * @offset: register offset + * + * Return: register value + */ +static inline u32 mei_txe_reg_read(void __iomem *base_addr, + unsigned long offset) +{ + return ioread32(base_addr + offset); +} + +/** + * mei_txe_reg_write - Writes 32bit data to the txe device + * + * @base_addr: registers base address + * @offset: register offset + * @value: the value to write + */ +static inline void mei_txe_reg_write(void __iomem *base_addr, + unsigned long offset, u32 value) +{ + iowrite32(value, base_addr + offset); +} + +/** + * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR + * + * @hw: the txe hardware structure + * @offset: register offset + * + * Doesn't check for aliveness while Reads 32bit data from the SeC BAR + * + * Return: register value + */ +static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw, + unsigned long offset) +{ + return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset); +} + +/** + * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR + * + * @hw: the txe hardware structure + * @offset: register offset + * + * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set + * + * Return: register value + */ +static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw, + unsigned long offset) +{ + WARN(!hw->aliveness, "sec read: aliveness not asserted\n"); + return mei_txe_sec_reg_read_silent(hw, offset); +} +/** + * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR + * doesn't check for aliveness + * + * @hw: the txe hardware structure + * @offset: register offset + * @value: value to write + * + * Doesn't check for aliveness while writes 32bit data from to the SeC BAR + */ +static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw, + unsigned long offset, u32 value) +{ + mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value); +} + +/** + * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR + * + * @hw: the txe hardware structure + * @offset: register offset + * @value: value to write + * + * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set + */ +static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw, + unsigned long offset, u32 value) +{ + WARN(!hw->aliveness, "sec write: aliveness not asserted\n"); + mei_txe_sec_reg_write_silent(hw, offset, value); +} +/** + * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR + * + * @hw: the txe hardware structure + * @offset: offset from which to read the data + * + * Return: the byte read. + */ +static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw, + unsigned long offset) +{ + return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset); +} + +/** + * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR + * + * @hw: the txe hardware structure + * @offset: offset from which to write the data + * @value: the byte to write + */ +static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw, + unsigned long offset, u32 value) +{ + mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value); +} + +/** + * mei_txe_aliveness_set - request for aliveness change + * + * @dev: the device structure + * @req: requested aliveness value + * + * Request for aliveness change and returns true if the change is + * really needed and false if aliveness is already + * in the requested state + * + * Locking: called under "dev->device_lock" lock + * + * Return: true if request was send + */ +static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req) +{ + + struct mei_txe_hw *hw = to_txe_hw(dev); + bool do_req = hw->aliveness != req; + + dev_dbg(dev->dev, "Aliveness current=%d request=%d\n", + hw->aliveness, req); + if (do_req) { + dev->pg_event = MEI_PG_EVENT_WAIT; + mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req); + } + return do_req; +} + + +/** + * mei_txe_aliveness_req_get - get aliveness requested register value + * + * @dev: the device structure + * + * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from + * HICR_HOST_ALIVENESS_REQ register value + * + * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value + */ +static u32 mei_txe_aliveness_req_get(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + u32 reg; + + reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG); + return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED; +} + +/** + * mei_txe_aliveness_get - get aliveness response register value + * + * @dev: the device structure + * + * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP + * register + */ +static u32 mei_txe_aliveness_get(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + u32 reg; + + reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG); + return reg & HICR_HOST_ALIVENESS_RESP_ACK; +} + +/** + * mei_txe_aliveness_poll - waits for aliveness to settle + * + * @dev: the device structure + * @expected: expected aliveness value + * + * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set + * + * Return: 0 if the expected value was received, -ETIME otherwise + */ +static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + ktime_t stop, start; + + start = ktime_get(); + stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT)); + do { + hw->aliveness = mei_txe_aliveness_get(dev); + if (hw->aliveness == expected) { + dev->pg_event = MEI_PG_EVENT_IDLE; + dev_dbg(dev->dev, "aliveness settled after %lld usecs\n", + ktime_to_us(ktime_sub(ktime_get(), start))); + return 0; + } + usleep_range(20, 50); + } while (ktime_before(ktime_get(), stop)); + + dev->pg_event = MEI_PG_EVENT_IDLE; + dev_err(dev->dev, "aliveness timed out\n"); + return -ETIME; +} + +/** + * mei_txe_aliveness_wait - waits for aliveness to settle + * + * @dev: the device structure + * @expected: expected aliveness value + * + * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set + * + * Return: 0 on success and < 0 otherwise + */ +static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + const unsigned long timeout = + msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT); + long err; + int ret; + + hw->aliveness = mei_txe_aliveness_get(dev); + if (hw->aliveness == expected) + return 0; + + mutex_unlock(&dev->device_lock); + err = wait_event_timeout(hw->wait_aliveness_resp, + dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout); + mutex_lock(&dev->device_lock); + + hw->aliveness = mei_txe_aliveness_get(dev); + ret = hw->aliveness == expected ? 0 : -ETIME; + + if (ret) + dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n", + err, hw->aliveness, dev->pg_event); + else + dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n", + jiffies_to_msecs(timeout - err), + hw->aliveness, dev->pg_event); + + dev->pg_event = MEI_PG_EVENT_IDLE; + return ret; +} + +/** + * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete + * + * @dev: the device structure + * @req: requested aliveness value + * + * Return: 0 on success and < 0 otherwise + */ +int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req) +{ + if (mei_txe_aliveness_set(dev, req)) + return mei_txe_aliveness_wait(dev, req); + return 0; +} + +/** + * mei_txe_pg_in_transition - is device now in pg transition + * + * @dev: the device structure + * + * Return: true if in pg transition, false otherwise + */ +static bool mei_txe_pg_in_transition(struct mei_device *dev) +{ + return dev->pg_event == MEI_PG_EVENT_WAIT; +} + +/** + * mei_txe_pg_is_enabled - detect if PG is supported by HW + * + * @dev: the device structure + * + * Return: true is pg supported, false otherwise + */ +static bool mei_txe_pg_is_enabled(struct mei_device *dev) +{ + return true; +} + +/** + * mei_txe_pg_state - translate aliveness register value + * to the mei power gating state + * + * @dev: the device structure + * + * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise + */ +static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON; +} + +/** + * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt + * + * @dev: the device structure + */ +static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + u32 hintmsk; + /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */ + hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG); + hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY; + mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk); +} + +/** + * mei_txe_input_doorbell_set - sets bit 0 in + * SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL. + * + * @hw: the txe hardware structure + */ +static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw) +{ + /* Clear the interrupt cause */ + clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause); + mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1); +} + +/** + * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1 + * + * @hw: the txe hardware structure + */ +static void mei_txe_output_ready_set(struct mei_txe_hw *hw) +{ + mei_txe_br_reg_write(hw, + SICR_SEC_IPC_OUTPUT_STATUS_REG, + SEC_IPC_OUTPUT_STATUS_RDY); +} + +/** + * mei_txe_is_input_ready - check if TXE is ready for receiving data + * + * @dev: the device structure + * + * Return: true if INPUT STATUS READY bit is set + */ +static bool mei_txe_is_input_ready(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + u32 status; + + status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG); + return !!(SEC_IPC_INPUT_STATUS_RDY & status); +} + +/** + * mei_txe_intr_clear - clear all interrupts + * + * @dev: the device structure + */ +static inline void mei_txe_intr_clear(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG, + SEC_IPC_HOST_INT_STATUS_PENDING); + mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK); + mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK); +} + +/** + * mei_txe_intr_disable - disable all interrupts + * + * @dev: the device structure + */ +static void mei_txe_intr_disable(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + mei_txe_br_reg_write(hw, HHIER_REG, 0); + mei_txe_br_reg_write(hw, HIER_REG, 0); +} +/** + * mei_txe_intr_enable - enable all interrupts + * + * @dev: the device structure + */ +static void mei_txe_intr_enable(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK); + mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK); +} + +/** + * mei_txe_synchronize_irq - wait for pending IRQ handlers + * + * @dev: the device structure + */ +static void mei_txe_synchronize_irq(struct mei_device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + + synchronize_irq(pdev->irq); +} + +/** + * mei_txe_pending_interrupts - check if there are pending interrupts + * only Aliveness, Input ready, and output doorbell are of relevance + * + * @dev: the device structure + * + * Checks if there are pending interrupts + * only Aliveness, Readiness, Input ready, and Output doorbell are relevant + * + * Return: true if there are pending interrupts + */ +static bool mei_txe_pending_interrupts(struct mei_device *dev) +{ + + struct mei_txe_hw *hw = to_txe_hw(dev); + bool ret = (hw->intr_cause & (TXE_INTR_READINESS | + TXE_INTR_ALIVENESS | + TXE_INTR_IN_READY | + TXE_INTR_OUT_DB)); + + if (ret) { + dev_dbg(dev->dev, + "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n", + !!(hw->intr_cause & TXE_INTR_IN_READY), + !!(hw->intr_cause & TXE_INTR_READINESS), + !!(hw->intr_cause & TXE_INTR_ALIVENESS), + !!(hw->intr_cause & TXE_INTR_OUT_DB)); + } + return ret; +} + +/** + * mei_txe_input_payload_write - write a dword to the host buffer + * at offset idx + * + * @dev: the device structure + * @idx: index in the host buffer + * @value: value + */ +static void mei_txe_input_payload_write(struct mei_device *dev, + unsigned long idx, u32 value) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG + + (idx * sizeof(u32)), value); +} + +/** + * mei_txe_out_data_read - read dword from the device buffer + * at offset idx + * + * @dev: the device structure + * @idx: index in the device buffer + * + * Return: register value at index + */ +static u32 mei_txe_out_data_read(const struct mei_device *dev, + unsigned long idx) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + return mei_txe_br_reg_read(hw, + BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32))); +} + +/* Readiness */ + +/** + * mei_txe_readiness_set_host_rdy - set host readiness bit + * + * @dev: the device structure + */ +static void mei_txe_readiness_set_host_rdy(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + mei_txe_br_reg_write(hw, + SICR_HOST_IPC_READINESS_REQ_REG, + SICR_HOST_IPC_READINESS_HOST_RDY); +} + +/** + * mei_txe_readiness_clear - clear host readiness bit + * + * @dev: the device structure + */ +static void mei_txe_readiness_clear(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG, + SICR_HOST_IPC_READINESS_RDY_CLR); +} +/** + * mei_txe_readiness_get - Reads and returns + * the HICR_SEC_IPC_READINESS register value + * + * @dev: the device structure + * + * Return: the HICR_SEC_IPC_READINESS register value + */ +static u32 mei_txe_readiness_get(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG); +} + + +/** + * mei_txe_readiness_is_sec_rdy - check readiness + * for HICR_SEC_IPC_READINESS_SEC_RDY + * + * @readiness: cached readiness state + * + * Return: true if readiness bit is set + */ +static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness) +{ + return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY); +} + +/** + * mei_txe_hw_is_ready - check if the hw is ready + * + * @dev: the device structure + * + * Return: true if sec is ready + */ +static bool mei_txe_hw_is_ready(struct mei_device *dev) +{ + u32 readiness = mei_txe_readiness_get(dev); + + return mei_txe_readiness_is_sec_rdy(readiness); +} + +/** + * mei_txe_host_is_ready - check if the host is ready + * + * @dev: the device structure + * + * Return: true if host is ready + */ +static inline bool mei_txe_host_is_ready(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG); + + return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY); +} + +/** + * mei_txe_readiness_wait - wait till readiness settles + * + * @dev: the device structure + * + * Return: 0 on success and -ETIME on timeout + */ +static int mei_txe_readiness_wait(struct mei_device *dev) +{ + if (mei_txe_hw_is_ready(dev)) + return 0; + + mutex_unlock(&dev->device_lock); + wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready, + msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT)); + mutex_lock(&dev->device_lock); + if (!dev->recvd_hw_ready) { + dev_err(dev->dev, "wait for readiness failed\n"); + return -ETIME; + } + + dev->recvd_hw_ready = false; + return 0; +} + +static const struct mei_fw_status mei_txe_fw_sts = { + .count = 2, + .status[0] = PCI_CFG_TXE_FW_STS0, + .status[1] = PCI_CFG_TXE_FW_STS1 +}; + +/** + * mei_txe_fw_status - read fw status register from pci config space + * + * @dev: mei device + * @fw_status: fw status register values + * + * Return: 0 on success, error otherwise + */ +static int mei_txe_fw_status(struct mei_device *dev, + struct mei_fw_status *fw_status) +{ + const struct mei_fw_status *fw_src = &mei_txe_fw_sts; + struct pci_dev *pdev = to_pci_dev(dev->dev); + int ret; + int i; + + if (!fw_status) + return -EINVAL; + + fw_status->count = fw_src->count; + for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) { + ret = pci_read_config_dword(pdev, fw_src->status[i], + &fw_status->status[i]); + trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X", + fw_src->status[i], + fw_status->status[i]); + if (ret) + return ret; + } + + return 0; +} + +/** + * mei_txe_hw_config - configure hardware at the start of the devices + * + * @dev: the device structure + * + * Configure hardware at the start of the device should be done only + * once at the device probe time + * + * Return: always 0 + */ +static int mei_txe_hw_config(struct mei_device *dev) +{ + + struct mei_txe_hw *hw = to_txe_hw(dev); + + hw->aliveness = mei_txe_aliveness_get(dev); + hw->readiness = mei_txe_readiness_get(dev); + + dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n", + hw->aliveness, hw->readiness); + + return 0; +} + +/** + * mei_txe_write - writes a message to device. + * + * @dev: the device structure + * @hdr: header of message + * @hdr_len: header length in bytes - must multiplication of a slot (4bytes) + * @data: payload + * @data_len: paylead length in bytes + * + * Return: 0 if success, < 0 - otherwise. + */ +static int mei_txe_write(struct mei_device *dev, + const void *hdr, size_t hdr_len, + const void *data, size_t data_len) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + unsigned long rem; + const u32 *reg_buf; + u32 slots = TXE_HBUF_DEPTH; + u32 dw_cnt; + unsigned long i, j; + + if (WARN_ON(!hdr || !data || hdr_len & 0x3)) + return -EINVAL; + + dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr)); + + dw_cnt = mei_data2slots(hdr_len + data_len); + if (dw_cnt > slots) + return -EMSGSIZE; + + if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n")) + return -EAGAIN; + + /* Enable Input Ready Interrupt. */ + mei_txe_input_ready_interrupt_enable(dev); + + if (!mei_txe_is_input_ready(dev)) { + char fw_sts_str[MEI_FW_STATUS_STR_SZ]; + + mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ); + dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str); + return -EAGAIN; + } + + reg_buf = hdr; + for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++) + mei_txe_input_payload_write(dev, i, reg_buf[i]); + + reg_buf = data; + for (j = 0; j < data_len / MEI_SLOT_SIZE; j++) + mei_txe_input_payload_write(dev, i + j, reg_buf[j]); + + rem = data_len & 0x3; + if (rem > 0) { + u32 reg = 0; + + memcpy(®, (const u8 *)data + data_len - rem, rem); + mei_txe_input_payload_write(dev, i + j, reg); + } + + /* after each write the whole buffer is consumed */ + hw->slots = 0; + + /* Set Input-Doorbell */ + mei_txe_input_doorbell_set(hw); + + return 0; +} + +/** + * mei_txe_hbuf_depth - mimics the me hbuf circular buffer + * + * @dev: the device structure + * + * Return: the TXE_HBUF_DEPTH + */ +static u32 mei_txe_hbuf_depth(const struct mei_device *dev) +{ + return TXE_HBUF_DEPTH; +} + +/** + * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer + * + * @dev: the device structure + * + * Return: always TXE_HBUF_DEPTH + */ +static int mei_txe_hbuf_empty_slots(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + return hw->slots; +} + +/** + * mei_txe_count_full_read_slots - mimics the me device circular buffer + * + * @dev: the device structure + * + * Return: always buffer size in dwords count + */ +static int mei_txe_count_full_read_slots(struct mei_device *dev) +{ + /* read buffers has static size */ + return TXE_HBUF_DEPTH; +} + +/** + * mei_txe_read_hdr - read message header which is always in 4 first bytes + * + * @dev: the device structure + * + * Return: mei message header + */ + +static u32 mei_txe_read_hdr(const struct mei_device *dev) +{ + return mei_txe_out_data_read(dev, 0); +} +/** + * mei_txe_read - reads a message from the txe device. + * + * @dev: the device structure + * @buf: message buffer will be written + * @len: message size will be read + * + * Return: -EINVAL on error wrong argument and 0 on success + */ +static int mei_txe_read(struct mei_device *dev, + unsigned char *buf, unsigned long len) +{ + + struct mei_txe_hw *hw = to_txe_hw(dev); + u32 *reg_buf, reg; + u32 rem; + u32 i; + + if (WARN_ON(!buf || !len)) + return -EINVAL; + + reg_buf = (u32 *)buf; + rem = len & 0x3; + + dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n", + len, mei_txe_out_data_read(dev, 0)); + + for (i = 0; i < len / MEI_SLOT_SIZE; i++) { + /* skip header: index starts from 1 */ + reg = mei_txe_out_data_read(dev, i + 1); + dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg); + *reg_buf++ = reg; + } + + if (rem) { + reg = mei_txe_out_data_read(dev, i + 1); + memcpy(reg_buf, ®, rem); + } + + mei_txe_output_ready_set(hw); + return 0; +} + +/** + * mei_txe_hw_reset - resets host and fw. + * + * @dev: the device structure + * @intr_enable: if interrupt should be enabled after reset. + * + * Return: 0 on success and < 0 in case of error + */ +static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + u32 aliveness_req; + /* + * read input doorbell to ensure consistency between Bridge and SeC + * return value might be garbage return + */ + (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG); + + aliveness_req = mei_txe_aliveness_req_get(dev); + hw->aliveness = mei_txe_aliveness_get(dev); + + /* Disable interrupts in this stage we will poll */ + mei_txe_intr_disable(dev); + + /* + * If Aliveness Request and Aliveness Response are not equal then + * wait for them to be equal + * Since we might have interrupts disabled - poll for it + */ + if (aliveness_req != hw->aliveness) + if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) { + dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n"); + return -EIO; + } + + /* + * If Aliveness Request and Aliveness Response are set then clear them + */ + if (aliveness_req) { + mei_txe_aliveness_set(dev, 0); + if (mei_txe_aliveness_poll(dev, 0) < 0) { + dev_err(dev->dev, "wait for aliveness failed ... bailing out\n"); + return -EIO; + } + } + + /* + * Set readiness RDY_CLR bit + */ + mei_txe_readiness_clear(dev); + + return 0; +} + +/** + * mei_txe_hw_start - start the hardware after reset + * + * @dev: the device structure + * + * Return: 0 on success an error code otherwise + */ +static int mei_txe_hw_start(struct mei_device *dev) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + int ret; + + u32 hisr; + + /* bring back interrupts */ + mei_txe_intr_enable(dev); + + ret = mei_txe_readiness_wait(dev); + if (ret < 0) { + dev_err(dev->dev, "waiting for readiness failed\n"); + return ret; + } + + /* + * If HISR.INT2_STS interrupt status bit is set then clear it. + */ + hisr = mei_txe_br_reg_read(hw, HISR_REG); + if (hisr & HISR_INT_2_STS) + mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS); + + /* Clear the interrupt cause of OutputDoorbell */ + clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause); + + ret = mei_txe_aliveness_set_sync(dev, 1); + if (ret < 0) { + dev_err(dev->dev, "wait for aliveness failed ... bailing out\n"); + return ret; + } + + pm_runtime_set_active(dev->dev); + + /* enable input ready interrupts: + * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK + */ + mei_txe_input_ready_interrupt_enable(dev); + + + /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */ + mei_txe_output_ready_set(hw); + + /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY + */ + mei_txe_readiness_set_host_rdy(dev); + + return 0; +} + +/** + * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into + * single bit mask and acknowledge the interrupts + * + * @dev: the device structure + * @do_ack: acknowledge interrupts + * + * Return: true if found interrupts to process. + */ +static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + u32 hisr; + u32 hhisr; + u32 ipc_isr; + u32 aliveness; + bool generated; + + /* read interrupt registers */ + hhisr = mei_txe_br_reg_read(hw, HHISR_REG); + generated = (hhisr & IPC_HHIER_MSK); + if (!generated) + goto out; + + hisr = mei_txe_br_reg_read(hw, HISR_REG); + + aliveness = mei_txe_aliveness_get(dev); + if (hhisr & IPC_HHIER_SEC && aliveness) { + ipc_isr = mei_txe_sec_reg_read_silent(hw, + SEC_IPC_HOST_INT_STATUS_REG); + } else { + ipc_isr = 0; + hhisr &= ~IPC_HHIER_SEC; + } + + if (do_ack) { + /* Save the interrupt causes */ + hw->intr_cause |= hisr & HISR_INT_STS_MSK; + if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY) + hw->intr_cause |= TXE_INTR_IN_READY; + + + mei_txe_intr_disable(dev); + /* Clear the interrupts in hierarchy: + * IPC and Bridge, than the High Level */ + mei_txe_sec_reg_write_silent(hw, + SEC_IPC_HOST_INT_STATUS_REG, ipc_isr); + mei_txe_br_reg_write(hw, HISR_REG, hisr); + mei_txe_br_reg_write(hw, HHISR_REG, hhisr); + } + +out: + return generated; +} + +/** + * mei_txe_irq_quick_handler - The ISR of the MEI device + * + * @irq: The irq number + * @dev_id: pointer to the device structure + * + * Return: IRQ_WAKE_THREAD if interrupt is designed for the device + * IRQ_NONE otherwise + */ +irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id) +{ + struct mei_device *dev = dev_id; + + if (mei_txe_check_and_ack_intrs(dev, true)) + return IRQ_WAKE_THREAD; + return IRQ_NONE; +} + + +/** + * mei_txe_irq_thread_handler - txe interrupt thread + * + * @irq: The irq number + * @dev_id: pointer to the device structure + * + * Return: IRQ_HANDLED + */ +irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id) +{ + struct mei_device *dev = (struct mei_device *) dev_id; + struct mei_txe_hw *hw = to_txe_hw(dev); + struct list_head cmpl_list; + s32 slots; + int rets = 0; + + dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n", + mei_txe_br_reg_read(hw, HHISR_REG), + mei_txe_br_reg_read(hw, HISR_REG), + mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG)); + + + /* initialize our complete list */ + mutex_lock(&dev->device_lock); + INIT_LIST_HEAD(&cmpl_list); + + if (pci_dev_msi_enabled(to_pci_dev(dev->dev))) + mei_txe_check_and_ack_intrs(dev, true); + + /* show irq events */ + mei_txe_pending_interrupts(dev); + + hw->aliveness = mei_txe_aliveness_get(dev); + hw->readiness = mei_txe_readiness_get(dev); + + /* Readiness: + * Detection of TXE driver going through reset + * or TXE driver resetting the HECI interface. + */ + if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) { + dev_dbg(dev->dev, "Readiness Interrupt was received...\n"); + + /* Check if SeC is going through reset */ + if (mei_txe_readiness_is_sec_rdy(hw->readiness)) { + dev_dbg(dev->dev, "we need to start the dev.\n"); + dev->recvd_hw_ready = true; + } else { + dev->recvd_hw_ready = false; + if (dev->dev_state != MEI_DEV_RESETTING) { + + dev_warn(dev->dev, "FW not ready: resetting.\n"); + schedule_work(&dev->reset_work); + goto end; + + } + } + wake_up(&dev->wait_hw_ready); + } + + /************************************************************/ + /* Check interrupt cause: + * Aliveness: Detection of SeC acknowledge of host request that + * it remain alive or host cancellation of that request. + */ + + if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) { + /* Clear the interrupt cause */ + dev_dbg(dev->dev, + "Aliveness Interrupt: Status: %d\n", hw->aliveness); + dev->pg_event = MEI_PG_EVENT_RECEIVED; + if (waitqueue_active(&hw->wait_aliveness_resp)) + wake_up(&hw->wait_aliveness_resp); + } + + + /* Output Doorbell: + * Detection of SeC having sent output to host + */ + slots = mei_count_full_read_slots(dev); + if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) { + /* Read from TXE */ + rets = mei_irq_read_handler(dev, &cmpl_list, &slots); + if (rets && + (dev->dev_state != MEI_DEV_RESETTING && + dev->dev_state != MEI_DEV_POWER_DOWN)) { + dev_err(dev->dev, + "mei_irq_read_handler ret = %d.\n", rets); + + schedule_work(&dev->reset_work); + goto end; + } + } + /* Input Ready: Detection if host can write to SeC */ + if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) { + dev->hbuf_is_ready = true; + hw->slots = TXE_HBUF_DEPTH; + } + + if (hw->aliveness && dev->hbuf_is_ready) { + /* get the real register value */ + dev->hbuf_is_ready = mei_hbuf_is_ready(dev); + rets = mei_irq_write_handler(dev, &cmpl_list); + if (rets && rets != -EMSGSIZE) + dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n", + rets); + dev->hbuf_is_ready = mei_hbuf_is_ready(dev); + } + + mei_irq_compl_handler(dev, &cmpl_list); + +end: + dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets); + + mutex_unlock(&dev->device_lock); + + mei_enable_interrupts(dev); + return IRQ_HANDLED; +} + +static const struct mei_hw_ops mei_txe_hw_ops = { + + .host_is_ready = mei_txe_host_is_ready, + + .fw_status = mei_txe_fw_status, + .pg_state = mei_txe_pg_state, + + .hw_is_ready = mei_txe_hw_is_ready, + .hw_reset = mei_txe_hw_reset, + .hw_config = mei_txe_hw_config, + .hw_start = mei_txe_hw_start, + + .pg_in_transition = mei_txe_pg_in_transition, + .pg_is_enabled = mei_txe_pg_is_enabled, + + .intr_clear = mei_txe_intr_clear, + .intr_enable = mei_txe_intr_enable, + .intr_disable = mei_txe_intr_disable, + .synchronize_irq = mei_txe_synchronize_irq, + + .hbuf_free_slots = mei_txe_hbuf_empty_slots, + .hbuf_is_ready = mei_txe_is_input_ready, + .hbuf_depth = mei_txe_hbuf_depth, + + .write = mei_txe_write, + + .rdbuf_full_slots = mei_txe_count_full_read_slots, + .read_hdr = mei_txe_read_hdr, + + .read = mei_txe_read, + +}; + +/** + * mei_txe_dev_init - allocates and initializes txe hardware specific structure + * + * @pdev: pci device + * + * Return: struct mei_device * on success or NULL + */ +struct mei_device *mei_txe_dev_init(struct pci_dev *pdev) +{ + struct mei_device *dev; + struct mei_txe_hw *hw; + + dev = devm_kzalloc(&pdev->dev, sizeof(*dev) + sizeof(*hw), GFP_KERNEL); + if (!dev) + return NULL; + + mei_device_init(dev, &pdev->dev, false, &mei_txe_hw_ops); + + hw = to_txe_hw(dev); + + init_waitqueue_head(&hw->wait_aliveness_resp); + + return dev; +} + +/** + * mei_txe_setup_satt2 - SATT2 configuration for DMA support. + * + * @dev: the device structure + * @addr: physical address start of the range + * @range: physical range size + * + * Return: 0 on success an error code otherwise + */ +int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range) +{ + struct mei_txe_hw *hw = to_txe_hw(dev); + + u32 lo32 = lower_32_bits(addr); + u32 hi32 = upper_32_bits(addr); + u32 ctrl; + + /* SATT is limited to 36 Bits */ + if (hi32 & ~0xF) + return -EINVAL; + + /* SATT has to be 16Byte aligned */ + if (lo32 & 0xF) + return -EINVAL; + + /* SATT range has to be 4Bytes aligned */ + if (range & 0x4) + return -EINVAL; + + /* SATT is limited to 32 MB range*/ + if (range > SATT_RANGE_MAX) + return -EINVAL; + + ctrl = SATT2_CTRL_VALID_MSK; + ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT; + + mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range); + mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32); + mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl); + dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n", + range, lo32, ctrl); + + return 0; +} |