aboutsummaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/ecc.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/mtd/nand/ecc.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'drivers/mtd/nand/ecc.c')
-rw-r--r--drivers/mtd/nand/ecc.c735
1 files changed, 735 insertions, 0 deletions
diff --git a/drivers/mtd/nand/ecc.c b/drivers/mtd/nand/ecc.c
new file mode 100644
index 000000000..5250764ce
--- /dev/null
+++ b/drivers/mtd/nand/ecc.c
@@ -0,0 +1,735 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Generic Error-Correcting Code (ECC) engine
+ *
+ * Copyright (C) 2019 Macronix
+ * Author:
+ * Miquèl RAYNAL <miquel.raynal@bootlin.com>
+ *
+ *
+ * This file describes the abstraction of any NAND ECC engine. It has been
+ * designed to fit most cases, including parallel NANDs and SPI-NANDs.
+ *
+ * There are three main situations where instantiating this ECC engine makes
+ * sense:
+ * - external: The ECC engine is outside the NAND pipeline, typically this
+ * is a software ECC engine, or an hardware engine that is
+ * outside the NAND controller pipeline.
+ * - pipelined: The ECC engine is inside the NAND pipeline, ie. on the
+ * controller's side. This is the case of most of the raw NAND
+ * controllers. In the pipeline case, the ECC bytes are
+ * generated/data corrected on the fly when a page is
+ * written/read.
+ * - ondie: The ECC engine is inside the NAND pipeline, on the chip's side.
+ * Some NAND chips can correct themselves the data.
+ *
+ * Besides the initial setup and final cleanups, the interfaces are rather
+ * simple:
+ * - prepare: Prepare an I/O request. Enable/disable the ECC engine based on
+ * the I/O request type. In case of software correction or external
+ * engine, this step may involve to derive the ECC bytes and place
+ * them in the OOB area before a write.
+ * - finish: Finish an I/O request. Correct the data in case of a read
+ * request and report the number of corrected bits/uncorrectable
+ * errors. Most likely empty for write operations, unless you have
+ * hardware specific stuff to do, like shutting down the engine to
+ * save power.
+ *
+ * The I/O request should be enclosed in a prepare()/finish() pair of calls
+ * and will behave differently depending on the requested I/O type:
+ * - raw: Correction disabled
+ * - ecc: Correction enabled
+ *
+ * The request direction is impacting the logic as well:
+ * - read: Load data from the NAND chip
+ * - write: Store data in the NAND chip
+ *
+ * Mixing all this combinations together gives the following behavior.
+ * Those are just examples, drivers are free to add custom steps in their
+ * prepare/finish hook.
+ *
+ * [external ECC engine]
+ * - external + prepare + raw + read: do nothing
+ * - external + finish + raw + read: do nothing
+ * - external + prepare + raw + write: do nothing
+ * - external + finish + raw + write: do nothing
+ * - external + prepare + ecc + read: do nothing
+ * - external + finish + ecc + read: calculate expected ECC bytes, extract
+ * ECC bytes from OOB buffer, correct
+ * and report any bitflip/error
+ * - external + prepare + ecc + write: calculate ECC bytes and store them at
+ * the right place in the OOB buffer based
+ * on the OOB layout
+ * - external + finish + ecc + write: do nothing
+ *
+ * [pipelined ECC engine]
+ * - pipelined + prepare + raw + read: disable the controller's ECC engine if
+ * activated
+ * - pipelined + finish + raw + read: do nothing
+ * - pipelined + prepare + raw + write: disable the controller's ECC engine if
+ * activated
+ * - pipelined + finish + raw + write: do nothing
+ * - pipelined + prepare + ecc + read: enable the controller's ECC engine if
+ * deactivated
+ * - pipelined + finish + ecc + read: check the status, report any
+ * error/bitflip
+ * - pipelined + prepare + ecc + write: enable the controller's ECC engine if
+ * deactivated
+ * - pipelined + finish + ecc + write: do nothing
+ *
+ * [ondie ECC engine]
+ * - ondie + prepare + raw + read: send commands to disable the on-chip ECC
+ * engine if activated
+ * - ondie + finish + raw + read: do nothing
+ * - ondie + prepare + raw + write: send commands to disable the on-chip ECC
+ * engine if activated
+ * - ondie + finish + raw + write: do nothing
+ * - ondie + prepare + ecc + read: send commands to enable the on-chip ECC
+ * engine if deactivated
+ * - ondie + finish + ecc + read: send commands to check the status, report
+ * any error/bitflip
+ * - ondie + prepare + ecc + write: send commands to enable the on-chip ECC
+ * engine if deactivated
+ * - ondie + finish + ecc + write: do nothing
+ */
+
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/of_platform.h>
+
+static LIST_HEAD(on_host_hw_engines);
+static DEFINE_MUTEX(on_host_hw_engines_mutex);
+
+/**
+ * nand_ecc_init_ctx - Init the ECC engine context
+ * @nand: the NAND device
+ *
+ * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx().
+ */
+int nand_ecc_init_ctx(struct nand_device *nand)
+{
+ if (!nand->ecc.engine || !nand->ecc.engine->ops->init_ctx)
+ return 0;
+
+ return nand->ecc.engine->ops->init_ctx(nand);
+}
+EXPORT_SYMBOL(nand_ecc_init_ctx);
+
+/**
+ * nand_ecc_cleanup_ctx - Cleanup the ECC engine context
+ * @nand: the NAND device
+ */
+void nand_ecc_cleanup_ctx(struct nand_device *nand)
+{
+ if (nand->ecc.engine && nand->ecc.engine->ops->cleanup_ctx)
+ nand->ecc.engine->ops->cleanup_ctx(nand);
+}
+EXPORT_SYMBOL(nand_ecc_cleanup_ctx);
+
+/**
+ * nand_ecc_prepare_io_req - Prepare an I/O request
+ * @nand: the NAND device
+ * @req: the I/O request
+ */
+int nand_ecc_prepare_io_req(struct nand_device *nand,
+ struct nand_page_io_req *req)
+{
+ if (!nand->ecc.engine || !nand->ecc.engine->ops->prepare_io_req)
+ return 0;
+
+ return nand->ecc.engine->ops->prepare_io_req(nand, req);
+}
+EXPORT_SYMBOL(nand_ecc_prepare_io_req);
+
+/**
+ * nand_ecc_finish_io_req - Finish an I/O request
+ * @nand: the NAND device
+ * @req: the I/O request
+ */
+int nand_ecc_finish_io_req(struct nand_device *nand,
+ struct nand_page_io_req *req)
+{
+ if (!nand->ecc.engine || !nand->ecc.engine->ops->finish_io_req)
+ return 0;
+
+ return nand->ecc.engine->ops->finish_io_req(nand, req);
+}
+EXPORT_SYMBOL(nand_ecc_finish_io_req);
+
+/* Define default OOB placement schemes for large and small page devices */
+static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ unsigned int total_ecc_bytes = nand->ecc.ctx.total;
+
+ if (section > 1)
+ return -ERANGE;
+
+ if (!section) {
+ oobregion->offset = 0;
+ if (mtd->oobsize == 16)
+ oobregion->length = 4;
+ else
+ oobregion->length = 3;
+ } else {
+ if (mtd->oobsize == 8)
+ return -ERANGE;
+
+ oobregion->offset = 6;
+ oobregion->length = total_ecc_bytes - 4;
+ }
+
+ return 0;
+}
+
+static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ if (section > 1)
+ return -ERANGE;
+
+ if (mtd->oobsize == 16) {
+ if (section)
+ return -ERANGE;
+
+ oobregion->length = 8;
+ oobregion->offset = 8;
+ } else {
+ oobregion->length = 2;
+ if (!section)
+ oobregion->offset = 3;
+ else
+ oobregion->offset = 6;
+ }
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
+ .ecc = nand_ooblayout_ecc_sp,
+ .free = nand_ooblayout_free_sp,
+};
+
+const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void)
+{
+ return &nand_ooblayout_sp_ops;
+}
+EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout);
+
+static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ unsigned int total_ecc_bytes = nand->ecc.ctx.total;
+
+ if (section || !total_ecc_bytes)
+ return -ERANGE;
+
+ oobregion->length = total_ecc_bytes;
+ oobregion->offset = mtd->oobsize - oobregion->length;
+
+ return 0;
+}
+
+static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ unsigned int total_ecc_bytes = nand->ecc.ctx.total;
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->length = mtd->oobsize - total_ecc_bytes - 2;
+ oobregion->offset = 2;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
+ .ecc = nand_ooblayout_ecc_lp,
+ .free = nand_ooblayout_free_lp,
+};
+
+const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
+{
+ return &nand_ooblayout_lp_ops;
+}
+EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout);
+
+/*
+ * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
+ * are placed at a fixed offset.
+ */
+static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ unsigned int total_ecc_bytes = nand->ecc.ctx.total;
+
+ if (section)
+ return -ERANGE;
+
+ switch (mtd->oobsize) {
+ case 64:
+ oobregion->offset = 40;
+ break;
+ case 128:
+ oobregion->offset = 80;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ oobregion->length = total_ecc_bytes;
+ if (oobregion->offset + oobregion->length > mtd->oobsize)
+ return -ERANGE;
+
+ return 0;
+}
+
+static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ unsigned int total_ecc_bytes = nand->ecc.ctx.total;
+ int ecc_offset = 0;
+
+ if (section < 0 || section > 1)
+ return -ERANGE;
+
+ switch (mtd->oobsize) {
+ case 64:
+ ecc_offset = 40;
+ break;
+ case 128:
+ ecc_offset = 80;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (section == 0) {
+ oobregion->offset = 2;
+ oobregion->length = ecc_offset - 2;
+ } else {
+ oobregion->offset = ecc_offset + total_ecc_bytes;
+ oobregion->length = mtd->oobsize - oobregion->offset;
+ }
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
+ .ecc = nand_ooblayout_ecc_lp_hamming,
+ .free = nand_ooblayout_free_lp_hamming,
+};
+
+const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void)
+{
+ return &nand_ooblayout_lp_hamming_ops;
+}
+EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout);
+
+static enum nand_ecc_engine_type
+of_get_nand_ecc_engine_type(struct device_node *np)
+{
+ struct device_node *eng_np;
+
+ if (of_property_read_bool(np, "nand-no-ecc-engine"))
+ return NAND_ECC_ENGINE_TYPE_NONE;
+
+ if (of_property_read_bool(np, "nand-use-soft-ecc-engine"))
+ return NAND_ECC_ENGINE_TYPE_SOFT;
+
+ eng_np = of_parse_phandle(np, "nand-ecc-engine", 0);
+ of_node_put(eng_np);
+
+ if (eng_np) {
+ if (eng_np == np)
+ return NAND_ECC_ENGINE_TYPE_ON_DIE;
+ else
+ return NAND_ECC_ENGINE_TYPE_ON_HOST;
+ }
+
+ return NAND_ECC_ENGINE_TYPE_INVALID;
+}
+
+static const char * const nand_ecc_placement[] = {
+ [NAND_ECC_PLACEMENT_OOB] = "oob",
+ [NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved",
+};
+
+static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np)
+{
+ enum nand_ecc_placement placement;
+ const char *pm;
+ int err;
+
+ err = of_property_read_string(np, "nand-ecc-placement", &pm);
+ if (!err) {
+ for (placement = NAND_ECC_PLACEMENT_OOB;
+ placement < ARRAY_SIZE(nand_ecc_placement); placement++) {
+ if (!strcasecmp(pm, nand_ecc_placement[placement]))
+ return placement;
+ }
+ }
+
+ return NAND_ECC_PLACEMENT_UNKNOWN;
+}
+
+static const char * const nand_ecc_algos[] = {
+ [NAND_ECC_ALGO_HAMMING] = "hamming",
+ [NAND_ECC_ALGO_BCH] = "bch",
+ [NAND_ECC_ALGO_RS] = "rs",
+};
+
+static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
+{
+ enum nand_ecc_algo ecc_algo;
+ const char *pm;
+ int err;
+
+ err = of_property_read_string(np, "nand-ecc-algo", &pm);
+ if (!err) {
+ for (ecc_algo = NAND_ECC_ALGO_HAMMING;
+ ecc_algo < ARRAY_SIZE(nand_ecc_algos);
+ ecc_algo++) {
+ if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
+ return ecc_algo;
+ }
+ }
+
+ return NAND_ECC_ALGO_UNKNOWN;
+}
+
+static int of_get_nand_ecc_step_size(struct device_node *np)
+{
+ int ret;
+ u32 val;
+
+ ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
+ return ret ? ret : val;
+}
+
+static int of_get_nand_ecc_strength(struct device_node *np)
+{
+ int ret;
+ u32 val;
+
+ ret = of_property_read_u32(np, "nand-ecc-strength", &val);
+ return ret ? ret : val;
+}
+
+void of_get_nand_ecc_user_config(struct nand_device *nand)
+{
+ struct device_node *dn = nanddev_get_of_node(nand);
+ int strength, size;
+
+ nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn);
+ nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn);
+ nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn);
+
+ strength = of_get_nand_ecc_strength(dn);
+ if (strength >= 0)
+ nand->ecc.user_conf.strength = strength;
+
+ size = of_get_nand_ecc_step_size(dn);
+ if (size >= 0)
+ nand->ecc.user_conf.step_size = size;
+
+ if (of_property_read_bool(dn, "nand-ecc-maximize"))
+ nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH;
+}
+EXPORT_SYMBOL(of_get_nand_ecc_user_config);
+
+/**
+ * nand_ecc_is_strong_enough - Check if the chip configuration meets the
+ * datasheet requirements.
+ *
+ * @nand: Device to check
+ *
+ * If our configuration corrects A bits per B bytes and the minimum
+ * required correction level is X bits per Y bytes, then we must ensure
+ * both of the following are true:
+ *
+ * (1) A / B >= X / Y
+ * (2) A >= X
+ *
+ * Requirement (1) ensures we can correct for the required bitflip density.
+ * Requirement (2) ensures we can correct even when all bitflips are clumped
+ * in the same sector.
+ */
+bool nand_ecc_is_strong_enough(struct nand_device *nand)
+{
+ const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand);
+ const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand);
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ int corr, ds_corr;
+
+ if (conf->step_size == 0 || reqs->step_size == 0)
+ /* Not enough information */
+ return true;
+
+ /*
+ * We get the number of corrected bits per page to compare
+ * the correction density.
+ */
+ corr = (mtd->writesize * conf->strength) / conf->step_size;
+ ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size;
+
+ return corr >= ds_corr && conf->strength >= reqs->strength;
+}
+EXPORT_SYMBOL(nand_ecc_is_strong_enough);
+
+/* ECC engine driver internal helpers */
+int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
+ struct nand_device *nand)
+{
+ unsigned int total_buffer_size;
+
+ ctx->nand = nand;
+
+ /* Let the user decide the exact length of each buffer */
+ if (!ctx->page_buffer_size)
+ ctx->page_buffer_size = nanddev_page_size(nand);
+ if (!ctx->oob_buffer_size)
+ ctx->oob_buffer_size = nanddev_per_page_oobsize(nand);
+
+ total_buffer_size = ctx->page_buffer_size + ctx->oob_buffer_size;
+
+ ctx->spare_databuf = kzalloc(total_buffer_size, GFP_KERNEL);
+ if (!ctx->spare_databuf)
+ return -ENOMEM;
+
+ ctx->spare_oobbuf = ctx->spare_databuf + ctx->page_buffer_size;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nand_ecc_init_req_tweaking);
+
+void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx)
+{
+ kfree(ctx->spare_databuf);
+}
+EXPORT_SYMBOL_GPL(nand_ecc_cleanup_req_tweaking);
+
+/*
+ * Ensure data and OOB area is fully read/written otherwise the correction might
+ * not work as expected.
+ */
+void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
+ struct nand_page_io_req *req)
+{
+ struct nand_device *nand = ctx->nand;
+ struct nand_page_io_req *orig, *tweak;
+
+ /* Save the original request */
+ ctx->orig_req = *req;
+ ctx->bounce_data = false;
+ ctx->bounce_oob = false;
+ orig = &ctx->orig_req;
+ tweak = req;
+
+ /* Ensure the request covers the entire page */
+ if (orig->datalen < nanddev_page_size(nand)) {
+ ctx->bounce_data = true;
+ tweak->dataoffs = 0;
+ tweak->datalen = nanddev_page_size(nand);
+ tweak->databuf.in = ctx->spare_databuf;
+ memset(tweak->databuf.in, 0xFF, ctx->page_buffer_size);
+ }
+
+ if (orig->ooblen < nanddev_per_page_oobsize(nand)) {
+ ctx->bounce_oob = true;
+ tweak->ooboffs = 0;
+ tweak->ooblen = nanddev_per_page_oobsize(nand);
+ tweak->oobbuf.in = ctx->spare_oobbuf;
+ memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size);
+ }
+
+ /* Copy the data that must be writen in the bounce buffers, if needed */
+ if (orig->type == NAND_PAGE_WRITE) {
+ if (ctx->bounce_data)
+ memcpy((void *)tweak->databuf.out + orig->dataoffs,
+ orig->databuf.out, orig->datalen);
+
+ if (ctx->bounce_oob)
+ memcpy((void *)tweak->oobbuf.out + orig->ooboffs,
+ orig->oobbuf.out, orig->ooblen);
+ }
+}
+EXPORT_SYMBOL_GPL(nand_ecc_tweak_req);
+
+void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
+ struct nand_page_io_req *req)
+{
+ struct nand_page_io_req *orig, *tweak;
+
+ orig = &ctx->orig_req;
+ tweak = req;
+
+ /* Restore the data read from the bounce buffers, if needed */
+ if (orig->type == NAND_PAGE_READ) {
+ if (ctx->bounce_data)
+ memcpy(orig->databuf.in,
+ tweak->databuf.in + orig->dataoffs,
+ orig->datalen);
+
+ if (ctx->bounce_oob)
+ memcpy(orig->oobbuf.in,
+ tweak->oobbuf.in + orig->ooboffs,
+ orig->ooblen);
+ }
+
+ /* Ensure the original request is restored */
+ *req = *orig;
+}
+EXPORT_SYMBOL_GPL(nand_ecc_restore_req);
+
+struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand)
+{
+ unsigned int algo = nand->ecc.user_conf.algo;
+
+ if (algo == NAND_ECC_ALGO_UNKNOWN)
+ algo = nand->ecc.defaults.algo;
+
+ switch (algo) {
+ case NAND_ECC_ALGO_HAMMING:
+ return nand_ecc_sw_hamming_get_engine();
+ case NAND_ECC_ALGO_BCH:
+ return nand_ecc_sw_bch_get_engine();
+ default:
+ break;
+ }
+
+ return NULL;
+}
+EXPORT_SYMBOL(nand_ecc_get_sw_engine);
+
+struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand)
+{
+ return nand->ecc.ondie_engine;
+}
+EXPORT_SYMBOL(nand_ecc_get_on_die_hw_engine);
+
+int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine)
+{
+ struct nand_ecc_engine *item;
+
+ if (!engine)
+ return -EINVAL;
+
+ /* Prevent multiple registrations of one engine */
+ list_for_each_entry(item, &on_host_hw_engines, node)
+ if (item == engine)
+ return 0;
+
+ mutex_lock(&on_host_hw_engines_mutex);
+ list_add_tail(&engine->node, &on_host_hw_engines);
+ mutex_unlock(&on_host_hw_engines_mutex);
+
+ return 0;
+}
+EXPORT_SYMBOL(nand_ecc_register_on_host_hw_engine);
+
+int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine)
+{
+ if (!engine)
+ return -EINVAL;
+
+ mutex_lock(&on_host_hw_engines_mutex);
+ list_del(&engine->node);
+ mutex_unlock(&on_host_hw_engines_mutex);
+
+ return 0;
+}
+EXPORT_SYMBOL(nand_ecc_unregister_on_host_hw_engine);
+
+static struct nand_ecc_engine *nand_ecc_match_on_host_hw_engine(struct device *dev)
+{
+ struct nand_ecc_engine *item;
+
+ list_for_each_entry(item, &on_host_hw_engines, node)
+ if (item->dev == dev)
+ return item;
+
+ return NULL;
+}
+
+struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand)
+{
+ struct nand_ecc_engine *engine = NULL;
+ struct device *dev = &nand->mtd.dev;
+ struct platform_device *pdev;
+ struct device_node *np;
+
+ if (list_empty(&on_host_hw_engines))
+ return NULL;
+
+ /* Check for an explicit nand-ecc-engine property */
+ np = of_parse_phandle(dev->of_node, "nand-ecc-engine", 0);
+ if (np) {
+ pdev = of_find_device_by_node(np);
+ if (!pdev)
+ return ERR_PTR(-EPROBE_DEFER);
+
+ engine = nand_ecc_match_on_host_hw_engine(&pdev->dev);
+ platform_device_put(pdev);
+ of_node_put(np);
+
+ if (!engine)
+ return ERR_PTR(-EPROBE_DEFER);
+ }
+
+ if (engine)
+ get_device(engine->dev);
+
+ return engine;
+}
+EXPORT_SYMBOL(nand_ecc_get_on_host_hw_engine);
+
+void nand_ecc_put_on_host_hw_engine(struct nand_device *nand)
+{
+ put_device(nand->ecc.engine->dev);
+}
+EXPORT_SYMBOL(nand_ecc_put_on_host_hw_engine);
+
+/*
+ * In the case of a pipelined engine, the device registering the ECC
+ * engine is not necessarily the ECC engine itself but may be a host controller.
+ * It is then useful to provide a helper to retrieve the right device object
+ * which actually represents the ECC engine.
+ */
+struct device *nand_ecc_get_engine_dev(struct device *host)
+{
+ struct platform_device *ecc_pdev;
+ struct device_node *np;
+
+ /*
+ * If the device node contains this property, it means we need to follow
+ * it in order to get the right ECC engine device we are looking for.
+ */
+ np = of_parse_phandle(host->of_node, "nand-ecc-engine", 0);
+ if (!np)
+ return host;
+
+ ecc_pdev = of_find_device_by_node(np);
+ if (!ecc_pdev) {
+ of_node_put(np);
+ return NULL;
+ }
+
+ platform_device_put(ecc_pdev);
+ of_node_put(np);
+
+ return &ecc_pdev->dev;
+}
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
+MODULE_DESCRIPTION("Generic ECC engine");