diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/mtd/nand/ecc.c | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'drivers/mtd/nand/ecc.c')
-rw-r--r-- | drivers/mtd/nand/ecc.c | 735 |
1 files changed, 735 insertions, 0 deletions
diff --git a/drivers/mtd/nand/ecc.c b/drivers/mtd/nand/ecc.c new file mode 100644 index 000000000..5250764ce --- /dev/null +++ b/drivers/mtd/nand/ecc.c @@ -0,0 +1,735 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Generic Error-Correcting Code (ECC) engine + * + * Copyright (C) 2019 Macronix + * Author: + * Miquèl RAYNAL <miquel.raynal@bootlin.com> + * + * + * This file describes the abstraction of any NAND ECC engine. It has been + * designed to fit most cases, including parallel NANDs and SPI-NANDs. + * + * There are three main situations where instantiating this ECC engine makes + * sense: + * - external: The ECC engine is outside the NAND pipeline, typically this + * is a software ECC engine, or an hardware engine that is + * outside the NAND controller pipeline. + * - pipelined: The ECC engine is inside the NAND pipeline, ie. on the + * controller's side. This is the case of most of the raw NAND + * controllers. In the pipeline case, the ECC bytes are + * generated/data corrected on the fly when a page is + * written/read. + * - ondie: The ECC engine is inside the NAND pipeline, on the chip's side. + * Some NAND chips can correct themselves the data. + * + * Besides the initial setup and final cleanups, the interfaces are rather + * simple: + * - prepare: Prepare an I/O request. Enable/disable the ECC engine based on + * the I/O request type. In case of software correction or external + * engine, this step may involve to derive the ECC bytes and place + * them in the OOB area before a write. + * - finish: Finish an I/O request. Correct the data in case of a read + * request and report the number of corrected bits/uncorrectable + * errors. Most likely empty for write operations, unless you have + * hardware specific stuff to do, like shutting down the engine to + * save power. + * + * The I/O request should be enclosed in a prepare()/finish() pair of calls + * and will behave differently depending on the requested I/O type: + * - raw: Correction disabled + * - ecc: Correction enabled + * + * The request direction is impacting the logic as well: + * - read: Load data from the NAND chip + * - write: Store data in the NAND chip + * + * Mixing all this combinations together gives the following behavior. + * Those are just examples, drivers are free to add custom steps in their + * prepare/finish hook. + * + * [external ECC engine] + * - external + prepare + raw + read: do nothing + * - external + finish + raw + read: do nothing + * - external + prepare + raw + write: do nothing + * - external + finish + raw + write: do nothing + * - external + prepare + ecc + read: do nothing + * - external + finish + ecc + read: calculate expected ECC bytes, extract + * ECC bytes from OOB buffer, correct + * and report any bitflip/error + * - external + prepare + ecc + write: calculate ECC bytes and store them at + * the right place in the OOB buffer based + * on the OOB layout + * - external + finish + ecc + write: do nothing + * + * [pipelined ECC engine] + * - pipelined + prepare + raw + read: disable the controller's ECC engine if + * activated + * - pipelined + finish + raw + read: do nothing + * - pipelined + prepare + raw + write: disable the controller's ECC engine if + * activated + * - pipelined + finish + raw + write: do nothing + * - pipelined + prepare + ecc + read: enable the controller's ECC engine if + * deactivated + * - pipelined + finish + ecc + read: check the status, report any + * error/bitflip + * - pipelined + prepare + ecc + write: enable the controller's ECC engine if + * deactivated + * - pipelined + finish + ecc + write: do nothing + * + * [ondie ECC engine] + * - ondie + prepare + raw + read: send commands to disable the on-chip ECC + * engine if activated + * - ondie + finish + raw + read: do nothing + * - ondie + prepare + raw + write: send commands to disable the on-chip ECC + * engine if activated + * - ondie + finish + raw + write: do nothing + * - ondie + prepare + ecc + read: send commands to enable the on-chip ECC + * engine if deactivated + * - ondie + finish + ecc + read: send commands to check the status, report + * any error/bitflip + * - ondie + prepare + ecc + write: send commands to enable the on-chip ECC + * engine if deactivated + * - ondie + finish + ecc + write: do nothing + */ + +#include <linux/module.h> +#include <linux/mtd/nand.h> +#include <linux/slab.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/of_platform.h> + +static LIST_HEAD(on_host_hw_engines); +static DEFINE_MUTEX(on_host_hw_engines_mutex); + +/** + * nand_ecc_init_ctx - Init the ECC engine context + * @nand: the NAND device + * + * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx(). + */ +int nand_ecc_init_ctx(struct nand_device *nand) +{ + if (!nand->ecc.engine || !nand->ecc.engine->ops->init_ctx) + return 0; + + return nand->ecc.engine->ops->init_ctx(nand); +} +EXPORT_SYMBOL(nand_ecc_init_ctx); + +/** + * nand_ecc_cleanup_ctx - Cleanup the ECC engine context + * @nand: the NAND device + */ +void nand_ecc_cleanup_ctx(struct nand_device *nand) +{ + if (nand->ecc.engine && nand->ecc.engine->ops->cleanup_ctx) + nand->ecc.engine->ops->cleanup_ctx(nand); +} +EXPORT_SYMBOL(nand_ecc_cleanup_ctx); + +/** + * nand_ecc_prepare_io_req - Prepare an I/O request + * @nand: the NAND device + * @req: the I/O request + */ +int nand_ecc_prepare_io_req(struct nand_device *nand, + struct nand_page_io_req *req) +{ + if (!nand->ecc.engine || !nand->ecc.engine->ops->prepare_io_req) + return 0; + + return nand->ecc.engine->ops->prepare_io_req(nand, req); +} +EXPORT_SYMBOL(nand_ecc_prepare_io_req); + +/** + * nand_ecc_finish_io_req - Finish an I/O request + * @nand: the NAND device + * @req: the I/O request + */ +int nand_ecc_finish_io_req(struct nand_device *nand, + struct nand_page_io_req *req) +{ + if (!nand->ecc.engine || !nand->ecc.engine->ops->finish_io_req) + return 0; + + return nand->ecc.engine->ops->finish_io_req(nand, req); +} +EXPORT_SYMBOL(nand_ecc_finish_io_req); + +/* Define default OOB placement schemes for large and small page devices */ +static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int total_ecc_bytes = nand->ecc.ctx.total; + + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + if (mtd->oobsize == 16) + oobregion->length = 4; + else + oobregion->length = 3; + } else { + if (mtd->oobsize == 8) + return -ERANGE; + + oobregion->offset = 6; + oobregion->length = total_ecc_bytes - 4; + } + + return 0; +} + +static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + if (mtd->oobsize == 16) { + if (section) + return -ERANGE; + + oobregion->length = 8; + oobregion->offset = 8; + } else { + oobregion->length = 2; + if (!section) + oobregion->offset = 3; + else + oobregion->offset = 6; + } + + return 0; +} + +static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { + .ecc = nand_ooblayout_ecc_sp, + .free = nand_ooblayout_free_sp, +}; + +const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void) +{ + return &nand_ooblayout_sp_ops; +} +EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout); + +static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int total_ecc_bytes = nand->ecc.ctx.total; + + if (section || !total_ecc_bytes) + return -ERANGE; + + oobregion->length = total_ecc_bytes; + oobregion->offset = mtd->oobsize - oobregion->length; + + return 0; +} + +static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int total_ecc_bytes = nand->ecc.ctx.total; + + if (section) + return -ERANGE; + + oobregion->length = mtd->oobsize - total_ecc_bytes - 2; + oobregion->offset = 2; + + return 0; +} + +static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { + .ecc = nand_ooblayout_ecc_lp, + .free = nand_ooblayout_free_lp, +}; + +const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void) +{ + return &nand_ooblayout_lp_ops; +} +EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout); + +/* + * Support the old "large page" layout used for 1-bit Hamming ECC where ECC + * are placed at a fixed offset. + */ +static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int total_ecc_bytes = nand->ecc.ctx.total; + + if (section) + return -ERANGE; + + switch (mtd->oobsize) { + case 64: + oobregion->offset = 40; + break; + case 128: + oobregion->offset = 80; + break; + default: + return -EINVAL; + } + + oobregion->length = total_ecc_bytes; + if (oobregion->offset + oobregion->length > mtd->oobsize) + return -ERANGE; + + return 0; +} + +static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int total_ecc_bytes = nand->ecc.ctx.total; + int ecc_offset = 0; + + if (section < 0 || section > 1) + return -ERANGE; + + switch (mtd->oobsize) { + case 64: + ecc_offset = 40; + break; + case 128: + ecc_offset = 80; + break; + default: + return -EINVAL; + } + + if (section == 0) { + oobregion->offset = 2; + oobregion->length = ecc_offset - 2; + } else { + oobregion->offset = ecc_offset + total_ecc_bytes; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { + .ecc = nand_ooblayout_ecc_lp_hamming, + .free = nand_ooblayout_free_lp_hamming, +}; + +const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void) +{ + return &nand_ooblayout_lp_hamming_ops; +} +EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout); + +static enum nand_ecc_engine_type +of_get_nand_ecc_engine_type(struct device_node *np) +{ + struct device_node *eng_np; + + if (of_property_read_bool(np, "nand-no-ecc-engine")) + return NAND_ECC_ENGINE_TYPE_NONE; + + if (of_property_read_bool(np, "nand-use-soft-ecc-engine")) + return NAND_ECC_ENGINE_TYPE_SOFT; + + eng_np = of_parse_phandle(np, "nand-ecc-engine", 0); + of_node_put(eng_np); + + if (eng_np) { + if (eng_np == np) + return NAND_ECC_ENGINE_TYPE_ON_DIE; + else + return NAND_ECC_ENGINE_TYPE_ON_HOST; + } + + return NAND_ECC_ENGINE_TYPE_INVALID; +} + +static const char * const nand_ecc_placement[] = { + [NAND_ECC_PLACEMENT_OOB] = "oob", + [NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved", +}; + +static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np) +{ + enum nand_ecc_placement placement; + const char *pm; + int err; + + err = of_property_read_string(np, "nand-ecc-placement", &pm); + if (!err) { + for (placement = NAND_ECC_PLACEMENT_OOB; + placement < ARRAY_SIZE(nand_ecc_placement); placement++) { + if (!strcasecmp(pm, nand_ecc_placement[placement])) + return placement; + } + } + + return NAND_ECC_PLACEMENT_UNKNOWN; +} + +static const char * const nand_ecc_algos[] = { + [NAND_ECC_ALGO_HAMMING] = "hamming", + [NAND_ECC_ALGO_BCH] = "bch", + [NAND_ECC_ALGO_RS] = "rs", +}; + +static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np) +{ + enum nand_ecc_algo ecc_algo; + const char *pm; + int err; + + err = of_property_read_string(np, "nand-ecc-algo", &pm); + if (!err) { + for (ecc_algo = NAND_ECC_ALGO_HAMMING; + ecc_algo < ARRAY_SIZE(nand_ecc_algos); + ecc_algo++) { + if (!strcasecmp(pm, nand_ecc_algos[ecc_algo])) + return ecc_algo; + } + } + + return NAND_ECC_ALGO_UNKNOWN; +} + +static int of_get_nand_ecc_step_size(struct device_node *np) +{ + int ret; + u32 val; + + ret = of_property_read_u32(np, "nand-ecc-step-size", &val); + return ret ? ret : val; +} + +static int of_get_nand_ecc_strength(struct device_node *np) +{ + int ret; + u32 val; + + ret = of_property_read_u32(np, "nand-ecc-strength", &val); + return ret ? ret : val; +} + +void of_get_nand_ecc_user_config(struct nand_device *nand) +{ + struct device_node *dn = nanddev_get_of_node(nand); + int strength, size; + + nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn); + nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn); + nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn); + + strength = of_get_nand_ecc_strength(dn); + if (strength >= 0) + nand->ecc.user_conf.strength = strength; + + size = of_get_nand_ecc_step_size(dn); + if (size >= 0) + nand->ecc.user_conf.step_size = size; + + if (of_property_read_bool(dn, "nand-ecc-maximize")) + nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH; +} +EXPORT_SYMBOL(of_get_nand_ecc_user_config); + +/** + * nand_ecc_is_strong_enough - Check if the chip configuration meets the + * datasheet requirements. + * + * @nand: Device to check + * + * If our configuration corrects A bits per B bytes and the minimum + * required correction level is X bits per Y bytes, then we must ensure + * both of the following are true: + * + * (1) A / B >= X / Y + * (2) A >= X + * + * Requirement (1) ensures we can correct for the required bitflip density. + * Requirement (2) ensures we can correct even when all bitflips are clumped + * in the same sector. + */ +bool nand_ecc_is_strong_enough(struct nand_device *nand) +{ + const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand); + const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand); + struct mtd_info *mtd = nanddev_to_mtd(nand); + int corr, ds_corr; + + if (conf->step_size == 0 || reqs->step_size == 0) + /* Not enough information */ + return true; + + /* + * We get the number of corrected bits per page to compare + * the correction density. + */ + corr = (mtd->writesize * conf->strength) / conf->step_size; + ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size; + + return corr >= ds_corr && conf->strength >= reqs->strength; +} +EXPORT_SYMBOL(nand_ecc_is_strong_enough); + +/* ECC engine driver internal helpers */ +int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx, + struct nand_device *nand) +{ + unsigned int total_buffer_size; + + ctx->nand = nand; + + /* Let the user decide the exact length of each buffer */ + if (!ctx->page_buffer_size) + ctx->page_buffer_size = nanddev_page_size(nand); + if (!ctx->oob_buffer_size) + ctx->oob_buffer_size = nanddev_per_page_oobsize(nand); + + total_buffer_size = ctx->page_buffer_size + ctx->oob_buffer_size; + + ctx->spare_databuf = kzalloc(total_buffer_size, GFP_KERNEL); + if (!ctx->spare_databuf) + return -ENOMEM; + + ctx->spare_oobbuf = ctx->spare_databuf + ctx->page_buffer_size; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_ecc_init_req_tweaking); + +void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx) +{ + kfree(ctx->spare_databuf); +} +EXPORT_SYMBOL_GPL(nand_ecc_cleanup_req_tweaking); + +/* + * Ensure data and OOB area is fully read/written otherwise the correction might + * not work as expected. + */ +void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx, + struct nand_page_io_req *req) +{ + struct nand_device *nand = ctx->nand; + struct nand_page_io_req *orig, *tweak; + + /* Save the original request */ + ctx->orig_req = *req; + ctx->bounce_data = false; + ctx->bounce_oob = false; + orig = &ctx->orig_req; + tweak = req; + + /* Ensure the request covers the entire page */ + if (orig->datalen < nanddev_page_size(nand)) { + ctx->bounce_data = true; + tweak->dataoffs = 0; + tweak->datalen = nanddev_page_size(nand); + tweak->databuf.in = ctx->spare_databuf; + memset(tweak->databuf.in, 0xFF, ctx->page_buffer_size); + } + + if (orig->ooblen < nanddev_per_page_oobsize(nand)) { + ctx->bounce_oob = true; + tweak->ooboffs = 0; + tweak->ooblen = nanddev_per_page_oobsize(nand); + tweak->oobbuf.in = ctx->spare_oobbuf; + memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size); + } + + /* Copy the data that must be writen in the bounce buffers, if needed */ + if (orig->type == NAND_PAGE_WRITE) { + if (ctx->bounce_data) + memcpy((void *)tweak->databuf.out + orig->dataoffs, + orig->databuf.out, orig->datalen); + + if (ctx->bounce_oob) + memcpy((void *)tweak->oobbuf.out + orig->ooboffs, + orig->oobbuf.out, orig->ooblen); + } +} +EXPORT_SYMBOL_GPL(nand_ecc_tweak_req); + +void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx, + struct nand_page_io_req *req) +{ + struct nand_page_io_req *orig, *tweak; + + orig = &ctx->orig_req; + tweak = req; + + /* Restore the data read from the bounce buffers, if needed */ + if (orig->type == NAND_PAGE_READ) { + if (ctx->bounce_data) + memcpy(orig->databuf.in, + tweak->databuf.in + orig->dataoffs, + orig->datalen); + + if (ctx->bounce_oob) + memcpy(orig->oobbuf.in, + tweak->oobbuf.in + orig->ooboffs, + orig->ooblen); + } + + /* Ensure the original request is restored */ + *req = *orig; +} +EXPORT_SYMBOL_GPL(nand_ecc_restore_req); + +struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand) +{ + unsigned int algo = nand->ecc.user_conf.algo; + + if (algo == NAND_ECC_ALGO_UNKNOWN) + algo = nand->ecc.defaults.algo; + + switch (algo) { + case NAND_ECC_ALGO_HAMMING: + return nand_ecc_sw_hamming_get_engine(); + case NAND_ECC_ALGO_BCH: + return nand_ecc_sw_bch_get_engine(); + default: + break; + } + + return NULL; +} +EXPORT_SYMBOL(nand_ecc_get_sw_engine); + +struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand) +{ + return nand->ecc.ondie_engine; +} +EXPORT_SYMBOL(nand_ecc_get_on_die_hw_engine); + +int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine) +{ + struct nand_ecc_engine *item; + + if (!engine) + return -EINVAL; + + /* Prevent multiple registrations of one engine */ + list_for_each_entry(item, &on_host_hw_engines, node) + if (item == engine) + return 0; + + mutex_lock(&on_host_hw_engines_mutex); + list_add_tail(&engine->node, &on_host_hw_engines); + mutex_unlock(&on_host_hw_engines_mutex); + + return 0; +} +EXPORT_SYMBOL(nand_ecc_register_on_host_hw_engine); + +int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine) +{ + if (!engine) + return -EINVAL; + + mutex_lock(&on_host_hw_engines_mutex); + list_del(&engine->node); + mutex_unlock(&on_host_hw_engines_mutex); + + return 0; +} +EXPORT_SYMBOL(nand_ecc_unregister_on_host_hw_engine); + +static struct nand_ecc_engine *nand_ecc_match_on_host_hw_engine(struct device *dev) +{ + struct nand_ecc_engine *item; + + list_for_each_entry(item, &on_host_hw_engines, node) + if (item->dev == dev) + return item; + + return NULL; +} + +struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand) +{ + struct nand_ecc_engine *engine = NULL; + struct device *dev = &nand->mtd.dev; + struct platform_device *pdev; + struct device_node *np; + + if (list_empty(&on_host_hw_engines)) + return NULL; + + /* Check for an explicit nand-ecc-engine property */ + np = of_parse_phandle(dev->of_node, "nand-ecc-engine", 0); + if (np) { + pdev = of_find_device_by_node(np); + if (!pdev) + return ERR_PTR(-EPROBE_DEFER); + + engine = nand_ecc_match_on_host_hw_engine(&pdev->dev); + platform_device_put(pdev); + of_node_put(np); + + if (!engine) + return ERR_PTR(-EPROBE_DEFER); + } + + if (engine) + get_device(engine->dev); + + return engine; +} +EXPORT_SYMBOL(nand_ecc_get_on_host_hw_engine); + +void nand_ecc_put_on_host_hw_engine(struct nand_device *nand) +{ + put_device(nand->ecc.engine->dev); +} +EXPORT_SYMBOL(nand_ecc_put_on_host_hw_engine); + +/* + * In the case of a pipelined engine, the device registering the ECC + * engine is not necessarily the ECC engine itself but may be a host controller. + * It is then useful to provide a helper to retrieve the right device object + * which actually represents the ECC engine. + */ +struct device *nand_ecc_get_engine_dev(struct device *host) +{ + struct platform_device *ecc_pdev; + struct device_node *np; + + /* + * If the device node contains this property, it means we need to follow + * it in order to get the right ECC engine device we are looking for. + */ + np = of_parse_phandle(host->of_node, "nand-ecc-engine", 0); + if (!np) + return host; + + ecc_pdev = of_find_device_by_node(np); + if (!ecc_pdev) { + of_node_put(np); + return NULL; + } + + platform_device_put(ecc_pdev); + of_node_put(np); + + return &ecc_pdev->dev; +} + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); +MODULE_DESCRIPTION("Generic ECC engine"); |