aboutsummaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/spi/core.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/mtd/nand/spi/core.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'drivers/mtd/nand/spi/core.c')
-rw-r--r--drivers/mtd/nand/spi/core.c1404
1 files changed, 1404 insertions, 0 deletions
diff --git a/drivers/mtd/nand/spi/core.c b/drivers/mtd/nand/spi/core.c
new file mode 100644
index 000000000..dacd9c0e8
--- /dev/null
+++ b/drivers/mtd/nand/spi/core.c
@@ -0,0 +1,1404 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2016-2017 Micron Technology, Inc.
+ *
+ * Authors:
+ * Peter Pan <peterpandong@micron.com>
+ * Boris Brezillon <boris.brezillon@bootlin.com>
+ */
+
+#define pr_fmt(fmt) "spi-nand: " fmt
+
+#include <linux/device.h>
+#include <linux/jiffies.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mtd/spinand.h>
+#include <linux/of.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/spi/spi.h>
+#include <linux/spi/spi-mem.h>
+
+static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
+{
+ struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
+ spinand->scratchbuf);
+ int ret;
+
+ ret = spi_mem_exec_op(spinand->spimem, &op);
+ if (ret)
+ return ret;
+
+ *val = *spinand->scratchbuf;
+ return 0;
+}
+
+static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
+{
+ struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
+ spinand->scratchbuf);
+
+ *spinand->scratchbuf = val;
+ return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int spinand_read_status(struct spinand_device *spinand, u8 *status)
+{
+ return spinand_read_reg_op(spinand, REG_STATUS, status);
+}
+
+static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+
+ if (WARN_ON(spinand->cur_target < 0 ||
+ spinand->cur_target >= nand->memorg.ntargets))
+ return -EINVAL;
+
+ *cfg = spinand->cfg_cache[spinand->cur_target];
+ return 0;
+}
+
+static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ int ret;
+
+ if (WARN_ON(spinand->cur_target < 0 ||
+ spinand->cur_target >= nand->memorg.ntargets))
+ return -EINVAL;
+
+ if (spinand->cfg_cache[spinand->cur_target] == cfg)
+ return 0;
+
+ ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
+ if (ret)
+ return ret;
+
+ spinand->cfg_cache[spinand->cur_target] = cfg;
+ return 0;
+}
+
+/**
+ * spinand_upd_cfg() - Update the configuration register
+ * @spinand: the spinand device
+ * @mask: the mask encoding the bits to update in the config reg
+ * @val: the new value to apply
+ *
+ * Update the configuration register.
+ *
+ * Return: 0 on success, a negative error code otherwise.
+ */
+int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
+{
+ int ret;
+ u8 cfg;
+
+ ret = spinand_get_cfg(spinand, &cfg);
+ if (ret)
+ return ret;
+
+ cfg &= ~mask;
+ cfg |= val;
+
+ return spinand_set_cfg(spinand, cfg);
+}
+
+/**
+ * spinand_select_target() - Select a specific NAND target/die
+ * @spinand: the spinand device
+ * @target: the target/die to select
+ *
+ * Select a new target/die. If chip only has one die, this function is a NOOP.
+ *
+ * Return: 0 on success, a negative error code otherwise.
+ */
+int spinand_select_target(struct spinand_device *spinand, unsigned int target)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ int ret;
+
+ if (WARN_ON(target >= nand->memorg.ntargets))
+ return -EINVAL;
+
+ if (spinand->cur_target == target)
+ return 0;
+
+ if (nand->memorg.ntargets == 1) {
+ spinand->cur_target = target;
+ return 0;
+ }
+
+ ret = spinand->select_target(spinand, target);
+ if (ret)
+ return ret;
+
+ spinand->cur_target = target;
+ return 0;
+}
+
+static int spinand_read_cfg(struct spinand_device *spinand)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ unsigned int target;
+ int ret;
+
+ for (target = 0; target < nand->memorg.ntargets; target++) {
+ ret = spinand_select_target(spinand, target);
+ if (ret)
+ return ret;
+
+ /*
+ * We use spinand_read_reg_op() instead of spinand_get_cfg()
+ * here to bypass the config cache.
+ */
+ ret = spinand_read_reg_op(spinand, REG_CFG,
+ &spinand->cfg_cache[target]);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int spinand_init_cfg_cache(struct spinand_device *spinand)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ struct device *dev = &spinand->spimem->spi->dev;
+
+ spinand->cfg_cache = devm_kcalloc(dev,
+ nand->memorg.ntargets,
+ sizeof(*spinand->cfg_cache),
+ GFP_KERNEL);
+ if (!spinand->cfg_cache)
+ return -ENOMEM;
+
+ return 0;
+}
+
+static int spinand_init_quad_enable(struct spinand_device *spinand)
+{
+ bool enable = false;
+
+ if (!(spinand->flags & SPINAND_HAS_QE_BIT))
+ return 0;
+
+ if (spinand->op_templates.read_cache->data.buswidth == 4 ||
+ spinand->op_templates.write_cache->data.buswidth == 4 ||
+ spinand->op_templates.update_cache->data.buswidth == 4)
+ enable = true;
+
+ return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
+ enable ? CFG_QUAD_ENABLE : 0);
+}
+
+static int spinand_ecc_enable(struct spinand_device *spinand,
+ bool enable)
+{
+ return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
+ enable ? CFG_ECC_ENABLE : 0);
+}
+
+static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+
+ if (spinand->eccinfo.get_status)
+ return spinand->eccinfo.get_status(spinand, status);
+
+ switch (status & STATUS_ECC_MASK) {
+ case STATUS_ECC_NO_BITFLIPS:
+ return 0;
+
+ case STATUS_ECC_HAS_BITFLIPS:
+ /*
+ * We have no way to know exactly how many bitflips have been
+ * fixed, so let's return the maximum possible value so that
+ * wear-leveling layers move the data immediately.
+ */
+ return nanddev_get_ecc_conf(nand)->strength;
+
+ case STATUS_ECC_UNCOR_ERROR:
+ return -EBADMSG;
+
+ default:
+ break;
+ }
+
+ return -EINVAL;
+}
+
+static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *region)
+{
+ return -ERANGE;
+}
+
+static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *region)
+{
+ if (section)
+ return -ERANGE;
+
+ /* Reserve 2 bytes for the BBM. */
+ region->offset = 2;
+ region->length = 62;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
+ .ecc = spinand_noecc_ooblayout_ecc,
+ .free = spinand_noecc_ooblayout_free,
+};
+
+static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
+{
+ struct spinand_device *spinand = nand_to_spinand(nand);
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ struct spinand_ondie_ecc_conf *engine_conf;
+
+ nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
+ nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
+ nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
+
+ engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
+ if (!engine_conf)
+ return -ENOMEM;
+
+ nand->ecc.ctx.priv = engine_conf;
+
+ if (spinand->eccinfo.ooblayout)
+ mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
+ else
+ mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
+
+ return 0;
+}
+
+static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
+{
+ kfree(nand->ecc.ctx.priv);
+}
+
+static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
+ struct nand_page_io_req *req)
+{
+ struct spinand_device *spinand = nand_to_spinand(nand);
+ bool enable = (req->mode != MTD_OPS_RAW);
+
+ memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
+
+ /* Only enable or disable the engine */
+ return spinand_ecc_enable(spinand, enable);
+}
+
+static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
+ struct nand_page_io_req *req)
+{
+ struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
+ struct spinand_device *spinand = nand_to_spinand(nand);
+ struct mtd_info *mtd = spinand_to_mtd(spinand);
+ int ret;
+
+ if (req->mode == MTD_OPS_RAW)
+ return 0;
+
+ /* Nothing to do when finishing a page write */
+ if (req->type == NAND_PAGE_WRITE)
+ return 0;
+
+ /* Finish a page read: check the status, report errors/bitflips */
+ ret = spinand_check_ecc_status(spinand, engine_conf->status);
+ if (ret == -EBADMSG)
+ mtd->ecc_stats.failed++;
+ else if (ret > 0)
+ mtd->ecc_stats.corrected += ret;
+
+ return ret;
+}
+
+static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
+ .init_ctx = spinand_ondie_ecc_init_ctx,
+ .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
+ .prepare_io_req = spinand_ondie_ecc_prepare_io_req,
+ .finish_io_req = spinand_ondie_ecc_finish_io_req,
+};
+
+static struct nand_ecc_engine spinand_ondie_ecc_engine = {
+ .ops = &spinand_ondie_ecc_engine_ops,
+};
+
+static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
+{
+ struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
+
+ if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
+ engine_conf)
+ engine_conf->status = status;
+}
+
+static int spinand_write_enable_op(struct spinand_device *spinand)
+{
+ struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
+
+ return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int spinand_load_page_op(struct spinand_device *spinand,
+ const struct nand_page_io_req *req)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ unsigned int row = nanddev_pos_to_row(nand, &req->pos);
+ struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
+
+ return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int spinand_read_from_cache_op(struct spinand_device *spinand,
+ const struct nand_page_io_req *req)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ struct mtd_info *mtd = spinand_to_mtd(spinand);
+ struct spi_mem_dirmap_desc *rdesc;
+ unsigned int nbytes = 0;
+ void *buf = NULL;
+ u16 column = 0;
+ ssize_t ret;
+
+ if (req->datalen) {
+ buf = spinand->databuf;
+ nbytes = nanddev_page_size(nand);
+ column = 0;
+ }
+
+ if (req->ooblen) {
+ nbytes += nanddev_per_page_oobsize(nand);
+ if (!buf) {
+ buf = spinand->oobbuf;
+ column = nanddev_page_size(nand);
+ }
+ }
+
+ if (req->mode == MTD_OPS_RAW)
+ rdesc = spinand->dirmaps[req->pos.plane].rdesc;
+ else
+ rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
+
+ while (nbytes) {
+ ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
+ if (ret < 0)
+ return ret;
+
+ if (!ret || ret > nbytes)
+ return -EIO;
+
+ nbytes -= ret;
+ column += ret;
+ buf += ret;
+ }
+
+ if (req->datalen)
+ memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
+ req->datalen);
+
+ if (req->ooblen) {
+ if (req->mode == MTD_OPS_AUTO_OOB)
+ mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
+ spinand->oobbuf,
+ req->ooboffs,
+ req->ooblen);
+ else
+ memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
+ req->ooblen);
+ }
+
+ return 0;
+}
+
+static int spinand_write_to_cache_op(struct spinand_device *spinand,
+ const struct nand_page_io_req *req)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ struct mtd_info *mtd = spinand_to_mtd(spinand);
+ struct spi_mem_dirmap_desc *wdesc;
+ unsigned int nbytes, column = 0;
+ void *buf = spinand->databuf;
+ ssize_t ret;
+
+ /*
+ * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
+ * the cache content to 0xFF (depends on vendor implementation), so we
+ * must fill the page cache entirely even if we only want to program
+ * the data portion of the page, otherwise we might corrupt the BBM or
+ * user data previously programmed in OOB area.
+ *
+ * Only reset the data buffer manually, the OOB buffer is prepared by
+ * ECC engines ->prepare_io_req() callback.
+ */
+ nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
+ memset(spinand->databuf, 0xff, nanddev_page_size(nand));
+
+ if (req->datalen)
+ memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
+ req->datalen);
+
+ if (req->ooblen) {
+ if (req->mode == MTD_OPS_AUTO_OOB)
+ mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
+ spinand->oobbuf,
+ req->ooboffs,
+ req->ooblen);
+ else
+ memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
+ req->ooblen);
+ }
+
+ if (req->mode == MTD_OPS_RAW)
+ wdesc = spinand->dirmaps[req->pos.plane].wdesc;
+ else
+ wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
+
+ while (nbytes) {
+ ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
+ if (ret < 0)
+ return ret;
+
+ if (!ret || ret > nbytes)
+ return -EIO;
+
+ nbytes -= ret;
+ column += ret;
+ buf += ret;
+ }
+
+ return 0;
+}
+
+static int spinand_program_op(struct spinand_device *spinand,
+ const struct nand_page_io_req *req)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ unsigned int row = nanddev_pos_to_row(nand, &req->pos);
+ struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
+
+ return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int spinand_erase_op(struct spinand_device *spinand,
+ const struct nand_pos *pos)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ unsigned int row = nanddev_pos_to_row(nand, pos);
+ struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
+
+ return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int spinand_wait(struct spinand_device *spinand,
+ unsigned long initial_delay_us,
+ unsigned long poll_delay_us,
+ u8 *s)
+{
+ struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
+ spinand->scratchbuf);
+ u8 status;
+ int ret;
+
+ ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
+ initial_delay_us,
+ poll_delay_us,
+ SPINAND_WAITRDY_TIMEOUT_MS);
+ if (ret)
+ return ret;
+
+ status = *spinand->scratchbuf;
+ if (!(status & STATUS_BUSY))
+ goto out;
+
+ /*
+ * Extra read, just in case the STATUS_READY bit has changed
+ * since our last check
+ */
+ ret = spinand_read_status(spinand, &status);
+ if (ret)
+ return ret;
+
+out:
+ if (s)
+ *s = status;
+
+ return status & STATUS_BUSY ? -ETIMEDOUT : 0;
+}
+
+static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
+ u8 ndummy, u8 *buf)
+{
+ struct spi_mem_op op = SPINAND_READID_OP(
+ naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
+ int ret;
+
+ ret = spi_mem_exec_op(spinand->spimem, &op);
+ if (!ret)
+ memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
+
+ return ret;
+}
+
+static int spinand_reset_op(struct spinand_device *spinand)
+{
+ struct spi_mem_op op = SPINAND_RESET_OP;
+ int ret;
+
+ ret = spi_mem_exec_op(spinand->spimem, &op);
+ if (ret)
+ return ret;
+
+ return spinand_wait(spinand,
+ SPINAND_RESET_INITIAL_DELAY_US,
+ SPINAND_RESET_POLL_DELAY_US,
+ NULL);
+}
+
+static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
+{
+ return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
+}
+
+static int spinand_read_page(struct spinand_device *spinand,
+ const struct nand_page_io_req *req)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ u8 status;
+ int ret;
+
+ ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
+ if (ret)
+ return ret;
+
+ ret = spinand_load_page_op(spinand, req);
+ if (ret)
+ return ret;
+
+ ret = spinand_wait(spinand,
+ SPINAND_READ_INITIAL_DELAY_US,
+ SPINAND_READ_POLL_DELAY_US,
+ &status);
+ if (ret < 0)
+ return ret;
+
+ spinand_ondie_ecc_save_status(nand, status);
+
+ ret = spinand_read_from_cache_op(spinand, req);
+ if (ret)
+ return ret;
+
+ return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
+}
+
+static int spinand_write_page(struct spinand_device *spinand,
+ const struct nand_page_io_req *req)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ u8 status;
+ int ret;
+
+ ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
+ if (ret)
+ return ret;
+
+ ret = spinand_write_enable_op(spinand);
+ if (ret)
+ return ret;
+
+ ret = spinand_write_to_cache_op(spinand, req);
+ if (ret)
+ return ret;
+
+ ret = spinand_program_op(spinand, req);
+ if (ret)
+ return ret;
+
+ ret = spinand_wait(spinand,
+ SPINAND_WRITE_INITIAL_DELAY_US,
+ SPINAND_WRITE_POLL_DELAY_US,
+ &status);
+ if (!ret && (status & STATUS_PROG_FAILED))
+ return -EIO;
+
+ return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
+}
+
+static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct spinand_device *spinand = mtd_to_spinand(mtd);
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct mtd_ecc_stats old_stats;
+ unsigned int max_bitflips = 0;
+ struct nand_io_iter iter;
+ bool disable_ecc = false;
+ bool ecc_failed = false;
+ int ret = 0;
+
+ if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
+ disable_ecc = true;
+
+ mutex_lock(&spinand->lock);
+
+ old_stats = mtd->ecc_stats;
+
+ nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
+ if (disable_ecc)
+ iter.req.mode = MTD_OPS_RAW;
+
+ ret = spinand_select_target(spinand, iter.req.pos.target);
+ if (ret)
+ break;
+
+ ret = spinand_read_page(spinand, &iter.req);
+ if (ret < 0 && ret != -EBADMSG)
+ break;
+
+ if (ret == -EBADMSG)
+ ecc_failed = true;
+ else
+ max_bitflips = max_t(unsigned int, max_bitflips, ret);
+
+ ret = 0;
+ ops->retlen += iter.req.datalen;
+ ops->oobretlen += iter.req.ooblen;
+ }
+
+ if (ops->stats) {
+ ops->stats->uncorrectable_errors +=
+ mtd->ecc_stats.failed - old_stats.failed;
+ ops->stats->corrected_bitflips +=
+ mtd->ecc_stats.corrected - old_stats.corrected;
+ }
+
+ mutex_unlock(&spinand->lock);
+
+ if (ecc_failed && !ret)
+ ret = -EBADMSG;
+
+ return ret ? ret : max_bitflips;
+}
+
+static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct spinand_device *spinand = mtd_to_spinand(mtd);
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct nand_io_iter iter;
+ bool disable_ecc = false;
+ int ret = 0;
+
+ if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
+ disable_ecc = true;
+
+ mutex_lock(&spinand->lock);
+
+ nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
+ if (disable_ecc)
+ iter.req.mode = MTD_OPS_RAW;
+
+ ret = spinand_select_target(spinand, iter.req.pos.target);
+ if (ret)
+ break;
+
+ ret = spinand_write_page(spinand, &iter.req);
+ if (ret)
+ break;
+
+ ops->retlen += iter.req.datalen;
+ ops->oobretlen += iter.req.ooblen;
+ }
+
+ mutex_unlock(&spinand->lock);
+
+ return ret;
+}
+
+static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+ struct spinand_device *spinand = nand_to_spinand(nand);
+ u8 marker[2] = { };
+ struct nand_page_io_req req = {
+ .pos = *pos,
+ .ooblen = sizeof(marker),
+ .ooboffs = 0,
+ .oobbuf.in = marker,
+ .mode = MTD_OPS_RAW,
+ };
+
+ spinand_select_target(spinand, pos->target);
+ spinand_read_page(spinand, &req);
+ if (marker[0] != 0xff || marker[1] != 0xff)
+ return true;
+
+ return false;
+}
+
+static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct spinand_device *spinand = nand_to_spinand(nand);
+ struct nand_pos pos;
+ int ret;
+
+ nanddev_offs_to_pos(nand, offs, &pos);
+ mutex_lock(&spinand->lock);
+ ret = nanddev_isbad(nand, &pos);
+ mutex_unlock(&spinand->lock);
+
+ return ret;
+}
+
+static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+ struct spinand_device *spinand = nand_to_spinand(nand);
+ u8 marker[2] = { };
+ struct nand_page_io_req req = {
+ .pos = *pos,
+ .ooboffs = 0,
+ .ooblen = sizeof(marker),
+ .oobbuf.out = marker,
+ .mode = MTD_OPS_RAW,
+ };
+ int ret;
+
+ ret = spinand_select_target(spinand, pos->target);
+ if (ret)
+ return ret;
+
+ ret = spinand_write_enable_op(spinand);
+ if (ret)
+ return ret;
+
+ return spinand_write_page(spinand, &req);
+}
+
+static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct spinand_device *spinand = nand_to_spinand(nand);
+ struct nand_pos pos;
+ int ret;
+
+ nanddev_offs_to_pos(nand, offs, &pos);
+ mutex_lock(&spinand->lock);
+ ret = nanddev_markbad(nand, &pos);
+ mutex_unlock(&spinand->lock);
+
+ return ret;
+}
+
+static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
+{
+ struct spinand_device *spinand = nand_to_spinand(nand);
+ u8 status;
+ int ret;
+
+ ret = spinand_select_target(spinand, pos->target);
+ if (ret)
+ return ret;
+
+ ret = spinand_write_enable_op(spinand);
+ if (ret)
+ return ret;
+
+ ret = spinand_erase_op(spinand, pos);
+ if (ret)
+ return ret;
+
+ ret = spinand_wait(spinand,
+ SPINAND_ERASE_INITIAL_DELAY_US,
+ SPINAND_ERASE_POLL_DELAY_US,
+ &status);
+
+ if (!ret && (status & STATUS_ERASE_FAILED))
+ ret = -EIO;
+
+ return ret;
+}
+
+static int spinand_mtd_erase(struct mtd_info *mtd,
+ struct erase_info *einfo)
+{
+ struct spinand_device *spinand = mtd_to_spinand(mtd);
+ int ret;
+
+ mutex_lock(&spinand->lock);
+ ret = nanddev_mtd_erase(mtd, einfo);
+ mutex_unlock(&spinand->lock);
+
+ return ret;
+}
+
+static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
+{
+ struct spinand_device *spinand = mtd_to_spinand(mtd);
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct nand_pos pos;
+ int ret;
+
+ nanddev_offs_to_pos(nand, offs, &pos);
+ mutex_lock(&spinand->lock);
+ ret = nanddev_isreserved(nand, &pos);
+ mutex_unlock(&spinand->lock);
+
+ return ret;
+}
+
+static int spinand_create_dirmap(struct spinand_device *spinand,
+ unsigned int plane)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ struct spi_mem_dirmap_info info = {
+ .length = nanddev_page_size(nand) +
+ nanddev_per_page_oobsize(nand),
+ };
+ struct spi_mem_dirmap_desc *desc;
+
+ /* The plane number is passed in MSB just above the column address */
+ info.offset = plane << fls(nand->memorg.pagesize);
+
+ info.op_tmpl = *spinand->op_templates.update_cache;
+ desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
+ spinand->spimem, &info);
+ if (IS_ERR(desc))
+ return PTR_ERR(desc);
+
+ spinand->dirmaps[plane].wdesc = desc;
+
+ info.op_tmpl = *spinand->op_templates.read_cache;
+ desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
+ spinand->spimem, &info);
+ if (IS_ERR(desc))
+ return PTR_ERR(desc);
+
+ spinand->dirmaps[plane].rdesc = desc;
+
+ if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
+ spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
+ spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
+
+ return 0;
+ }
+
+ info.op_tmpl = *spinand->op_templates.update_cache;
+ info.op_tmpl.data.ecc = true;
+ desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
+ spinand->spimem, &info);
+ if (IS_ERR(desc))
+ return PTR_ERR(desc);
+
+ spinand->dirmaps[plane].wdesc_ecc = desc;
+
+ info.op_tmpl = *spinand->op_templates.read_cache;
+ info.op_tmpl.data.ecc = true;
+ desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
+ spinand->spimem, &info);
+ if (IS_ERR(desc))
+ return PTR_ERR(desc);
+
+ spinand->dirmaps[plane].rdesc_ecc = desc;
+
+ return 0;
+}
+
+static int spinand_create_dirmaps(struct spinand_device *spinand)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ int i, ret;
+
+ spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
+ sizeof(*spinand->dirmaps) *
+ nand->memorg.planes_per_lun,
+ GFP_KERNEL);
+ if (!spinand->dirmaps)
+ return -ENOMEM;
+
+ for (i = 0; i < nand->memorg.planes_per_lun; i++) {
+ ret = spinand_create_dirmap(spinand, i);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static const struct nand_ops spinand_ops = {
+ .erase = spinand_erase,
+ .markbad = spinand_markbad,
+ .isbad = spinand_isbad,
+};
+
+static const struct spinand_manufacturer *spinand_manufacturers[] = {
+ &ato_spinand_manufacturer,
+ &gigadevice_spinand_manufacturer,
+ &macronix_spinand_manufacturer,
+ &micron_spinand_manufacturer,
+ &paragon_spinand_manufacturer,
+ &toshiba_spinand_manufacturer,
+ &winbond_spinand_manufacturer,
+ &xtx_spinand_manufacturer,
+};
+
+static int spinand_manufacturer_match(struct spinand_device *spinand,
+ enum spinand_readid_method rdid_method)
+{
+ u8 *id = spinand->id.data;
+ unsigned int i;
+ int ret;
+
+ for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
+ const struct spinand_manufacturer *manufacturer =
+ spinand_manufacturers[i];
+
+ if (id[0] != manufacturer->id)
+ continue;
+
+ ret = spinand_match_and_init(spinand,
+ manufacturer->chips,
+ manufacturer->nchips,
+ rdid_method);
+ if (ret < 0)
+ continue;
+
+ spinand->manufacturer = manufacturer;
+ return 0;
+ }
+ return -ENOTSUPP;
+}
+
+static int spinand_id_detect(struct spinand_device *spinand)
+{
+ u8 *id = spinand->id.data;
+ int ret;
+
+ ret = spinand_read_id_op(spinand, 0, 0, id);
+ if (ret)
+ return ret;
+ ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
+ if (!ret)
+ return 0;
+
+ ret = spinand_read_id_op(spinand, 1, 0, id);
+ if (ret)
+ return ret;
+ ret = spinand_manufacturer_match(spinand,
+ SPINAND_READID_METHOD_OPCODE_ADDR);
+ if (!ret)
+ return 0;
+
+ ret = spinand_read_id_op(spinand, 0, 1, id);
+ if (ret)
+ return ret;
+ ret = spinand_manufacturer_match(spinand,
+ SPINAND_READID_METHOD_OPCODE_DUMMY);
+
+ return ret;
+}
+
+static int spinand_manufacturer_init(struct spinand_device *spinand)
+{
+ if (spinand->manufacturer->ops->init)
+ return spinand->manufacturer->ops->init(spinand);
+
+ return 0;
+}
+
+static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
+{
+ /* Release manufacturer private data */
+ if (spinand->manufacturer->ops->cleanup)
+ return spinand->manufacturer->ops->cleanup(spinand);
+}
+
+static const struct spi_mem_op *
+spinand_select_op_variant(struct spinand_device *spinand,
+ const struct spinand_op_variants *variants)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ unsigned int i;
+
+ for (i = 0; i < variants->nops; i++) {
+ struct spi_mem_op op = variants->ops[i];
+ unsigned int nbytes;
+ int ret;
+
+ nbytes = nanddev_per_page_oobsize(nand) +
+ nanddev_page_size(nand);
+
+ while (nbytes) {
+ op.data.nbytes = nbytes;
+ ret = spi_mem_adjust_op_size(spinand->spimem, &op);
+ if (ret)
+ break;
+
+ if (!spi_mem_supports_op(spinand->spimem, &op))
+ break;
+
+ nbytes -= op.data.nbytes;
+ }
+
+ if (!nbytes)
+ return &variants->ops[i];
+ }
+
+ return NULL;
+}
+
+/**
+ * spinand_match_and_init() - Try to find a match between a device ID and an
+ * entry in a spinand_info table
+ * @spinand: SPI NAND object
+ * @table: SPI NAND device description table
+ * @table_size: size of the device description table
+ * @rdid_method: read id method to match
+ *
+ * Match between a device ID retrieved through the READ_ID command and an
+ * entry in the SPI NAND description table. If a match is found, the spinand
+ * object will be initialized with information provided by the matching
+ * spinand_info entry.
+ *
+ * Return: 0 on success, a negative error code otherwise.
+ */
+int spinand_match_and_init(struct spinand_device *spinand,
+ const struct spinand_info *table,
+ unsigned int table_size,
+ enum spinand_readid_method rdid_method)
+{
+ u8 *id = spinand->id.data;
+ struct nand_device *nand = spinand_to_nand(spinand);
+ unsigned int i;
+
+ for (i = 0; i < table_size; i++) {
+ const struct spinand_info *info = &table[i];
+ const struct spi_mem_op *op;
+
+ if (rdid_method != info->devid.method)
+ continue;
+
+ if (memcmp(id + 1, info->devid.id, info->devid.len))
+ continue;
+
+ nand->memorg = table[i].memorg;
+ nanddev_set_ecc_requirements(nand, &table[i].eccreq);
+ spinand->eccinfo = table[i].eccinfo;
+ spinand->flags = table[i].flags;
+ spinand->id.len = 1 + table[i].devid.len;
+ spinand->select_target = table[i].select_target;
+
+ op = spinand_select_op_variant(spinand,
+ info->op_variants.read_cache);
+ if (!op)
+ return -ENOTSUPP;
+
+ spinand->op_templates.read_cache = op;
+
+ op = spinand_select_op_variant(spinand,
+ info->op_variants.write_cache);
+ if (!op)
+ return -ENOTSUPP;
+
+ spinand->op_templates.write_cache = op;
+
+ op = spinand_select_op_variant(spinand,
+ info->op_variants.update_cache);
+ spinand->op_templates.update_cache = op;
+
+ return 0;
+ }
+
+ return -ENOTSUPP;
+}
+
+static int spinand_detect(struct spinand_device *spinand)
+{
+ struct device *dev = &spinand->spimem->spi->dev;
+ struct nand_device *nand = spinand_to_nand(spinand);
+ int ret;
+
+ ret = spinand_reset_op(spinand);
+ if (ret)
+ return ret;
+
+ ret = spinand_id_detect(spinand);
+ if (ret) {
+ dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
+ spinand->id.data);
+ return ret;
+ }
+
+ if (nand->memorg.ntargets > 1 && !spinand->select_target) {
+ dev_err(dev,
+ "SPI NANDs with more than one die must implement ->select_target()\n");
+ return -EINVAL;
+ }
+
+ dev_info(&spinand->spimem->spi->dev,
+ "%s SPI NAND was found.\n", spinand->manufacturer->name);
+ dev_info(&spinand->spimem->spi->dev,
+ "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
+ nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
+ nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
+
+ return 0;
+}
+
+static int spinand_init_flash(struct spinand_device *spinand)
+{
+ struct device *dev = &spinand->spimem->spi->dev;
+ struct nand_device *nand = spinand_to_nand(spinand);
+ int ret, i;
+
+ ret = spinand_read_cfg(spinand);
+ if (ret)
+ return ret;
+
+ ret = spinand_init_quad_enable(spinand);
+ if (ret)
+ return ret;
+
+ ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
+ if (ret)
+ return ret;
+
+ ret = spinand_manufacturer_init(spinand);
+ if (ret) {
+ dev_err(dev,
+ "Failed to initialize the SPI NAND chip (err = %d)\n",
+ ret);
+ return ret;
+ }
+
+ /* After power up, all blocks are locked, so unlock them here. */
+ for (i = 0; i < nand->memorg.ntargets; i++) {
+ ret = spinand_select_target(spinand, i);
+ if (ret)
+ break;
+
+ ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
+ if (ret)
+ break;
+ }
+
+ if (ret)
+ spinand_manufacturer_cleanup(spinand);
+
+ return ret;
+}
+
+static void spinand_mtd_resume(struct mtd_info *mtd)
+{
+ struct spinand_device *spinand = mtd_to_spinand(mtd);
+ int ret;
+
+ ret = spinand_reset_op(spinand);
+ if (ret)
+ return;
+
+ ret = spinand_init_flash(spinand);
+ if (ret)
+ return;
+
+ spinand_ecc_enable(spinand, false);
+}
+
+static int spinand_init(struct spinand_device *spinand)
+{
+ struct device *dev = &spinand->spimem->spi->dev;
+ struct mtd_info *mtd = spinand_to_mtd(spinand);
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ int ret;
+
+ /*
+ * We need a scratch buffer because the spi_mem interface requires that
+ * buf passed in spi_mem_op->data.buf be DMA-able.
+ */
+ spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
+ if (!spinand->scratchbuf)
+ return -ENOMEM;
+
+ ret = spinand_detect(spinand);
+ if (ret)
+ goto err_free_bufs;
+
+ /*
+ * Use kzalloc() instead of devm_kzalloc() here, because some drivers
+ * may use this buffer for DMA access.
+ * Memory allocated by devm_ does not guarantee DMA-safe alignment.
+ */
+ spinand->databuf = kzalloc(nanddev_page_size(nand) +
+ nanddev_per_page_oobsize(nand),
+ GFP_KERNEL);
+ if (!spinand->databuf) {
+ ret = -ENOMEM;
+ goto err_free_bufs;
+ }
+
+ spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
+
+ ret = spinand_init_cfg_cache(spinand);
+ if (ret)
+ goto err_free_bufs;
+
+ ret = spinand_init_flash(spinand);
+ if (ret)
+ goto err_free_bufs;
+
+ ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
+ if (ret)
+ goto err_manuf_cleanup;
+
+ /* SPI-NAND default ECC engine is on-die */
+ nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
+ nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
+
+ spinand_ecc_enable(spinand, false);
+ ret = nanddev_ecc_engine_init(nand);
+ if (ret)
+ goto err_cleanup_nanddev;
+
+ mtd->_read_oob = spinand_mtd_read;
+ mtd->_write_oob = spinand_mtd_write;
+ mtd->_block_isbad = spinand_mtd_block_isbad;
+ mtd->_block_markbad = spinand_mtd_block_markbad;
+ mtd->_block_isreserved = spinand_mtd_block_isreserved;
+ mtd->_erase = spinand_mtd_erase;
+ mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
+ mtd->_resume = spinand_mtd_resume;
+
+ if (nand->ecc.engine) {
+ ret = mtd_ooblayout_count_freebytes(mtd);
+ if (ret < 0)
+ goto err_cleanup_ecc_engine;
+ }
+
+ mtd->oobavail = ret;
+
+ /* Propagate ECC information to mtd_info */
+ mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
+ mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
+
+ ret = spinand_create_dirmaps(spinand);
+ if (ret) {
+ dev_err(dev,
+ "Failed to create direct mappings for read/write operations (err = %d)\n",
+ ret);
+ goto err_cleanup_ecc_engine;
+ }
+
+ return 0;
+
+err_cleanup_ecc_engine:
+ nanddev_ecc_engine_cleanup(nand);
+
+err_cleanup_nanddev:
+ nanddev_cleanup(nand);
+
+err_manuf_cleanup:
+ spinand_manufacturer_cleanup(spinand);
+
+err_free_bufs:
+ kfree(spinand->databuf);
+ kfree(spinand->scratchbuf);
+ return ret;
+}
+
+static void spinand_cleanup(struct spinand_device *spinand)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+
+ nanddev_cleanup(nand);
+ spinand_manufacturer_cleanup(spinand);
+ kfree(spinand->databuf);
+ kfree(spinand->scratchbuf);
+}
+
+static int spinand_probe(struct spi_mem *mem)
+{
+ struct spinand_device *spinand;
+ struct mtd_info *mtd;
+ int ret;
+
+ spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
+ GFP_KERNEL);
+ if (!spinand)
+ return -ENOMEM;
+
+ spinand->spimem = mem;
+ spi_mem_set_drvdata(mem, spinand);
+ spinand_set_of_node(spinand, mem->spi->dev.of_node);
+ mutex_init(&spinand->lock);
+ mtd = spinand_to_mtd(spinand);
+ mtd->dev.parent = &mem->spi->dev;
+
+ ret = spinand_init(spinand);
+ if (ret)
+ return ret;
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret)
+ goto err_spinand_cleanup;
+
+ return 0;
+
+err_spinand_cleanup:
+ spinand_cleanup(spinand);
+
+ return ret;
+}
+
+static int spinand_remove(struct spi_mem *mem)
+{
+ struct spinand_device *spinand;
+ struct mtd_info *mtd;
+ int ret;
+
+ spinand = spi_mem_get_drvdata(mem);
+ mtd = spinand_to_mtd(spinand);
+
+ ret = mtd_device_unregister(mtd);
+ if (ret)
+ return ret;
+
+ spinand_cleanup(spinand);
+
+ return 0;
+}
+
+static const struct spi_device_id spinand_ids[] = {
+ { .name = "spi-nand" },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(spi, spinand_ids);
+
+#ifdef CONFIG_OF
+static const struct of_device_id spinand_of_ids[] = {
+ { .compatible = "spi-nand" },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, spinand_of_ids);
+#endif
+
+static struct spi_mem_driver spinand_drv = {
+ .spidrv = {
+ .id_table = spinand_ids,
+ .driver = {
+ .name = "spi-nand",
+ .of_match_table = of_match_ptr(spinand_of_ids),
+ },
+ },
+ .probe = spinand_probe,
+ .remove = spinand_remove,
+};
+module_spi_mem_driver(spinand_drv);
+
+MODULE_DESCRIPTION("SPI NAND framework");
+MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
+MODULE_LICENSE("GPL v2");