diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/net/ethernet/intel/ice/ice_ptp.h | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'drivers/net/ethernet/intel/ice/ice_ptp.h')
-rw-r--r-- | drivers/net/ethernet/intel/ice/ice_ptp.h | 308 |
1 files changed, 308 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/ice/ice_ptp.h b/drivers/net/ethernet/intel/ice/ice_ptp.h new file mode 100644 index 000000000..9cda2f43e --- /dev/null +++ b/drivers/net/ethernet/intel/ice/ice_ptp.h @@ -0,0 +1,308 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* Copyright (C) 2021, Intel Corporation. */ + +#ifndef _ICE_PTP_H_ +#define _ICE_PTP_H_ + +#include <linux/ptp_clock_kernel.h> +#include <linux/kthread.h> + +#include "ice_ptp_hw.h" + +enum ice_ptp_pin_e810 { + GPIO_20 = 0, + GPIO_21, + GPIO_22, + GPIO_23, + NUM_PTP_PIN_E810 +}; + +enum ice_ptp_pin_e810t { + GNSS = 0, + SMA1, + UFL1, + SMA2, + UFL2, + NUM_PTP_PINS_E810T +}; + +struct ice_perout_channel { + bool ena; + u32 gpio_pin; + u64 period; + u64 start_time; +}; + +/* The ice hardware captures Tx hardware timestamps in the PHY. The timestamp + * is stored in a buffer of registers. Depending on the specific hardware, + * this buffer might be shared across multiple PHY ports. + * + * On transmit of a packet to be timestamped, software is responsible for + * selecting an open index. Hardware makes no attempt to lock or prevent + * re-use of an index for multiple packets. + * + * To handle this, timestamp indexes must be tracked by software to ensure + * that an index is not re-used for multiple transmitted packets. The + * structures and functions declared in this file track the available Tx + * register indexes, as well as provide storage for the SKB pointers. + * + * To allow multiple ports to access the shared register block independently, + * the blocks are split up so that indexes are assigned to each port based on + * hardware logical port number. + * + * The timestamp blocks are handled differently for E810- and E822-based + * devices. In E810 devices, each port has its own block of timestamps, while in + * E822 there is a need to logically break the block of registers into smaller + * chunks based on the port number to avoid collisions. + * + * Example for port 5 in E810: + * +--------+--------+--------+--------+--------+--------+--------+--------+ + * |register|register|register|register|register|register|register|register| + * | block | block | block | block | block | block | block | block | + * | for | for | for | for | for | for | for | for | + * | port 0 | port 1 | port 2 | port 3 | port 4 | port 5 | port 6 | port 7 | + * +--------+--------+--------+--------+--------+--------+--------+--------+ + * ^^ + * || + * |--- quad offset is always 0 + * ---- quad number + * + * Example for port 5 in E822: + * +-----------------------------+-----------------------------+ + * | register block for quad 0 | register block for quad 1 | + * |+------+------+------+------+|+------+------+------+------+| + * ||port 0|port 1|port 2|port 3|||port 0|port 1|port 2|port 3|| + * |+------+------+------+------+|+------+------+------+------+| + * +-----------------------------+-------^---------------------+ + * ^ | + * | --- quad offset* + * ---- quad number + * + * * PHY port 5 is port 1 in quad 1 + * + */ + +/** + * struct ice_tx_tstamp - Tracking for a single Tx timestamp + * @skb: pointer to the SKB for this timestamp request + * @start: jiffies when the timestamp was first requested + * @cached_tstamp: last read timestamp + * + * This structure tracks a single timestamp request. The SKB pointer is + * provided when initiating a request. The start time is used to ensure that + * we discard old requests that were not fulfilled within a 2 second time + * window. + * Timestamp values in the PHY are read only and do not get cleared except at + * hardware reset or when a new timestamp value is captured. + * + * Some PHY types do not provide a "ready" bitmap indicating which timestamp + * indexes are valid. In these cases, we use a cached_tstamp to keep track of + * the last timestamp we read for a given index. If the current timestamp + * value is the same as the cached value, we assume a new timestamp hasn't + * been captured. This avoids reporting stale timestamps to the stack. This is + * only done if the verify_cached flag is set in ice_ptp_tx structure. + */ +struct ice_tx_tstamp { + struct sk_buff *skb; + unsigned long start; + u64 cached_tstamp; +}; + +/** + * struct ice_ptp_tx - Tracking structure for all Tx timestamp requests on a port + * @lock: lock to prevent concurrent access to fields of this struct + * @tstamps: array of len to store outstanding requests + * @in_use: bitmap of len to indicate which slots are in use + * @stale: bitmap of len to indicate slots which have stale timestamps + * @block: which memory block (quad or port) the timestamps are captured in + * @offset: offset into timestamp block to get the real index + * @len: length of the tstamps and in_use fields. + * @init: if true, the tracker is initialized; + * @calibrating: if true, the PHY is calibrating the Tx offset. During this + * window, timestamps are temporarily disabled. + * @verify_cached: if true, verify new timestamp differs from last read value + */ +struct ice_ptp_tx { + spinlock_t lock; /* lock protecting in_use bitmap */ + struct ice_tx_tstamp *tstamps; + unsigned long *in_use; + unsigned long *stale; + u8 block; + u8 offset; + u8 len; + u8 init : 1; + u8 calibrating : 1; + u8 verify_cached : 1; +}; + +/* Quad and port information for initializing timestamp blocks */ +#define INDEX_PER_QUAD 64 +#define INDEX_PER_PORT_E822 16 +#define INDEX_PER_PORT_E810 64 + +/** + * struct ice_ptp_port - data used to initialize an external port for PTP + * + * This structure contains data indicating whether a single external port is + * ready for PTP functionality. It is used to track the port initialization + * and determine when the port's PHY offset is valid. + * + * @tx: Tx timestamp tracking for this port + * @ov_work: delayed work task for tracking when PHY offset is valid + * @ps_lock: mutex used to protect the overall PTP PHY start procedure + * @link_up: indicates whether the link is up + * @tx_fifo_busy_cnt: number of times the Tx FIFO was busy + * @port_num: the port number this structure represents + */ +struct ice_ptp_port { + struct ice_ptp_tx tx; + struct kthread_delayed_work ov_work; + struct mutex ps_lock; /* protects overall PTP PHY start procedure */ + bool link_up; + u8 tx_fifo_busy_cnt; + u8 port_num; +}; + +#define GLTSYN_TGT_H_IDX_MAX 4 + +/** + * struct ice_ptp - data used for integrating with CONFIG_PTP_1588_CLOCK + * @port: data for the PHY port initialization procedure + * @work: delayed work function for periodic tasks + * @extts_work: work function for handling external Tx timestamps + * @cached_phc_time: a cached copy of the PHC time for timestamp extension + * @cached_phc_jiffies: jiffies when cached_phc_time was last updated + * @ext_ts_chan: the external timestamp channel in use + * @ext_ts_irq: the external timestamp IRQ in use + * @kworker: kwork thread for handling periodic work + * @perout_channels: periodic output data + * @info: structure defining PTP hardware capabilities + * @clock: pointer to registered PTP clock device + * @tstamp_config: hardware timestamping configuration + * @reset_time: kernel time after clock stop on reset + * @tx_hwtstamp_skipped: number of Tx time stamp requests skipped + * @tx_hwtstamp_timeouts: number of Tx skbs discarded with no time stamp + * @tx_hwtstamp_flushed: number of Tx skbs flushed due to interface closed + * @tx_hwtstamp_discarded: number of Tx skbs discarded due to cached PHC time + * being too old to correctly extend timestamp + * @late_cached_phc_updates: number of times cached PHC update is late + */ +struct ice_ptp { + struct ice_ptp_port port; + struct kthread_delayed_work work; + struct kthread_work extts_work; + u64 cached_phc_time; + unsigned long cached_phc_jiffies; + u8 ext_ts_chan; + u8 ext_ts_irq; + struct kthread_worker *kworker; + struct ice_perout_channel perout_channels[GLTSYN_TGT_H_IDX_MAX]; + struct ptp_clock_info info; + struct ptp_clock *clock; + struct hwtstamp_config tstamp_config; + u64 reset_time; + u32 tx_hwtstamp_skipped; + u32 tx_hwtstamp_timeouts; + u32 tx_hwtstamp_flushed; + u32 tx_hwtstamp_discarded; + u32 late_cached_phc_updates; +}; + +#define __ptp_port_to_ptp(p) \ + container_of((p), struct ice_ptp, port) +#define ptp_port_to_pf(p) \ + container_of(__ptp_port_to_ptp((p)), struct ice_pf, ptp) + +#define __ptp_info_to_ptp(i) \ + container_of((i), struct ice_ptp, info) +#define ptp_info_to_pf(i) \ + container_of(__ptp_info_to_ptp((i)), struct ice_pf, ptp) + +#define PFTSYN_SEM_BYTES 4 +#define PTP_SHARED_CLK_IDX_VALID BIT(31) +#define TS_CMD_MASK 0xF +#define SYNC_EXEC_CMD 0x3 +#define ICE_PTP_TS_VALID BIT(0) + +#define FIFO_EMPTY BIT(2) +#define FIFO_OK 0xFF +#define ICE_PTP_FIFO_NUM_CHECKS 5 +/* Per-channel register definitions */ +#define GLTSYN_AUX_OUT(_chan, _idx) (GLTSYN_AUX_OUT_0(_idx) + ((_chan) * 8)) +#define GLTSYN_AUX_IN(_chan, _idx) (GLTSYN_AUX_IN_0(_idx) + ((_chan) * 8)) +#define GLTSYN_CLKO(_chan, _idx) (GLTSYN_CLKO_0(_idx) + ((_chan) * 8)) +#define GLTSYN_TGT_L(_chan, _idx) (GLTSYN_TGT_L_0(_idx) + ((_chan) * 16)) +#define GLTSYN_TGT_H(_chan, _idx) (GLTSYN_TGT_H_0(_idx) + ((_chan) * 16)) +#define GLTSYN_EVNT_L(_chan, _idx) (GLTSYN_EVNT_L_0(_idx) + ((_chan) * 16)) +#define GLTSYN_EVNT_H(_chan, _idx) (GLTSYN_EVNT_H_0(_idx) + ((_chan) * 16)) +#define GLTSYN_EVNT_H_IDX_MAX 3 + +/* Pin definitions for PTP PPS out */ +#define PPS_CLK_GEN_CHAN 3 +#define PPS_CLK_SRC_CHAN 2 +#define PPS_PIN_INDEX 5 +#define TIME_SYNC_PIN_INDEX 4 +#define N_EXT_TS_E810 3 +#define N_PER_OUT_E810 4 +#define N_PER_OUT_E810T 3 +#define N_PER_OUT_NO_SMA_E810T 2 +#define N_EXT_TS_NO_SMA_E810T 2 +#define ETH_GLTSYN_ENA(_i) (0x03000348 + ((_i) * 4)) + +#if IS_ENABLED(CONFIG_PTP_1588_CLOCK) +struct ice_pf; +int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr); +int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr); +void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena); +int ice_get_ptp_clock_index(struct ice_pf *pf); + +s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb); +bool ice_ptp_process_ts(struct ice_pf *pf); + +void +ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring, + union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb); +void ice_ptp_reset(struct ice_pf *pf); +void ice_ptp_prepare_for_reset(struct ice_pf *pf); +void ice_ptp_init(struct ice_pf *pf); +void ice_ptp_release(struct ice_pf *pf); +void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup); +#else /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */ +static inline int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) +{ + return -EOPNOTSUPP; +} + +static inline int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) +{ + return -EOPNOTSUPP; +} + +static inline void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) { } +static inline int ice_get_ptp_clock_index(struct ice_pf *pf) +{ + return -1; +} + +static inline s8 +ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) +{ + return -1; +} + +static inline bool ice_ptp_process_ts(struct ice_pf *pf) +{ + return true; +} +static inline void +ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring, + union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) { } +static inline void ice_ptp_reset(struct ice_pf *pf) { } +static inline void ice_ptp_prepare_for_reset(struct ice_pf *pf) { } +static inline void ice_ptp_init(struct ice_pf *pf) { } +static inline void ice_ptp_release(struct ice_pf *pf) { } +static inline void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) +{ +} +#endif /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */ +#endif /* _ICE_PTP_H_ */ |