aboutsummaryrefslogtreecommitdiff
path: root/drivers/spi/spi-ep93xx.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/spi/spi-ep93xx.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'drivers/spi/spi-ep93xx.c')
-rw-r--r--drivers/spi/spi-ep93xx.c770
1 files changed, 770 insertions, 0 deletions
diff --git a/drivers/spi/spi-ep93xx.c b/drivers/spi/spi-ep93xx.c
new file mode 100644
index 000000000..5896a7b2f
--- /dev/null
+++ b/drivers/spi/spi-ep93xx.c
@@ -0,0 +1,770 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for Cirrus Logic EP93xx SPI controller.
+ *
+ * Copyright (C) 2010-2011 Mika Westerberg
+ *
+ * Explicit FIFO handling code was inspired by amba-pl022 driver.
+ *
+ * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
+ *
+ * For more information about the SPI controller see documentation on Cirrus
+ * Logic web site:
+ * https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
+ */
+
+#include <linux/io.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/dmaengine.h>
+#include <linux/bitops.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/sched.h>
+#include <linux/scatterlist.h>
+#include <linux/spi/spi.h>
+
+#include <linux/platform_data/dma-ep93xx.h>
+#include <linux/platform_data/spi-ep93xx.h>
+
+#define SSPCR0 0x0000
+#define SSPCR0_SPO BIT(6)
+#define SSPCR0_SPH BIT(7)
+#define SSPCR0_SCR_SHIFT 8
+
+#define SSPCR1 0x0004
+#define SSPCR1_RIE BIT(0)
+#define SSPCR1_TIE BIT(1)
+#define SSPCR1_RORIE BIT(2)
+#define SSPCR1_LBM BIT(3)
+#define SSPCR1_SSE BIT(4)
+#define SSPCR1_MS BIT(5)
+#define SSPCR1_SOD BIT(6)
+
+#define SSPDR 0x0008
+
+#define SSPSR 0x000c
+#define SSPSR_TFE BIT(0)
+#define SSPSR_TNF BIT(1)
+#define SSPSR_RNE BIT(2)
+#define SSPSR_RFF BIT(3)
+#define SSPSR_BSY BIT(4)
+#define SSPCPSR 0x0010
+
+#define SSPIIR 0x0014
+#define SSPIIR_RIS BIT(0)
+#define SSPIIR_TIS BIT(1)
+#define SSPIIR_RORIS BIT(2)
+#define SSPICR SSPIIR
+
+/* timeout in milliseconds */
+#define SPI_TIMEOUT 5
+/* maximum depth of RX/TX FIFO */
+#define SPI_FIFO_SIZE 8
+
+/**
+ * struct ep93xx_spi - EP93xx SPI controller structure
+ * @clk: clock for the controller
+ * @mmio: pointer to ioremap()'d registers
+ * @sspdr_phys: physical address of the SSPDR register
+ * @tx: current byte in transfer to transmit
+ * @rx: current byte in transfer to receive
+ * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
+ * frame decreases this level and sending one frame increases it.
+ * @dma_rx: RX DMA channel
+ * @dma_tx: TX DMA channel
+ * @dma_rx_data: RX parameters passed to the DMA engine
+ * @dma_tx_data: TX parameters passed to the DMA engine
+ * @rx_sgt: sg table for RX transfers
+ * @tx_sgt: sg table for TX transfers
+ * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
+ * the client
+ */
+struct ep93xx_spi {
+ struct clk *clk;
+ void __iomem *mmio;
+ unsigned long sspdr_phys;
+ size_t tx;
+ size_t rx;
+ size_t fifo_level;
+ struct dma_chan *dma_rx;
+ struct dma_chan *dma_tx;
+ struct ep93xx_dma_data dma_rx_data;
+ struct ep93xx_dma_data dma_tx_data;
+ struct sg_table rx_sgt;
+ struct sg_table tx_sgt;
+ void *zeropage;
+};
+
+/* converts bits per word to CR0.DSS value */
+#define bits_per_word_to_dss(bpw) ((bpw) - 1)
+
+/**
+ * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
+ * @master: SPI master
+ * @rate: desired SPI output clock rate
+ * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
+ * @div_scr: pointer to return the scr divider
+ */
+static int ep93xx_spi_calc_divisors(struct spi_master *master,
+ u32 rate, u8 *div_cpsr, u8 *div_scr)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ unsigned long spi_clk_rate = clk_get_rate(espi->clk);
+ int cpsr, scr;
+
+ /*
+ * Make sure that max value is between values supported by the
+ * controller.
+ */
+ rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
+
+ /*
+ * Calculate divisors so that we can get speed according the
+ * following formula:
+ * rate = spi_clock_rate / (cpsr * (1 + scr))
+ *
+ * cpsr must be even number and starts from 2, scr can be any number
+ * between 0 and 255.
+ */
+ for (cpsr = 2; cpsr <= 254; cpsr += 2) {
+ for (scr = 0; scr <= 255; scr++) {
+ if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
+ *div_scr = (u8)scr;
+ *div_cpsr = (u8)cpsr;
+ return 0;
+ }
+ }
+ }
+
+ return -EINVAL;
+}
+
+static int ep93xx_spi_chip_setup(struct spi_master *master,
+ struct spi_device *spi,
+ struct spi_transfer *xfer)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
+ u8 div_cpsr = 0;
+ u8 div_scr = 0;
+ u16 cr0;
+ int err;
+
+ err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
+ &div_cpsr, &div_scr);
+ if (err)
+ return err;
+
+ cr0 = div_scr << SSPCR0_SCR_SHIFT;
+ if (spi->mode & SPI_CPOL)
+ cr0 |= SSPCR0_SPO;
+ if (spi->mode & SPI_CPHA)
+ cr0 |= SSPCR0_SPH;
+ cr0 |= dss;
+
+ dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
+ spi->mode, div_cpsr, div_scr, dss);
+ dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
+
+ writel(div_cpsr, espi->mmio + SSPCPSR);
+ writel(cr0, espi->mmio + SSPCR0);
+
+ return 0;
+}
+
+static void ep93xx_do_write(struct spi_master *master)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ struct spi_transfer *xfer = master->cur_msg->state;
+ u32 val = 0;
+
+ if (xfer->bits_per_word > 8) {
+ if (xfer->tx_buf)
+ val = ((u16 *)xfer->tx_buf)[espi->tx];
+ espi->tx += 2;
+ } else {
+ if (xfer->tx_buf)
+ val = ((u8 *)xfer->tx_buf)[espi->tx];
+ espi->tx += 1;
+ }
+ writel(val, espi->mmio + SSPDR);
+}
+
+static void ep93xx_do_read(struct spi_master *master)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ struct spi_transfer *xfer = master->cur_msg->state;
+ u32 val;
+
+ val = readl(espi->mmio + SSPDR);
+ if (xfer->bits_per_word > 8) {
+ if (xfer->rx_buf)
+ ((u16 *)xfer->rx_buf)[espi->rx] = val;
+ espi->rx += 2;
+ } else {
+ if (xfer->rx_buf)
+ ((u8 *)xfer->rx_buf)[espi->rx] = val;
+ espi->rx += 1;
+ }
+}
+
+/**
+ * ep93xx_spi_read_write() - perform next RX/TX transfer
+ * @master: SPI master
+ *
+ * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
+ * called several times, the whole transfer will be completed. Returns
+ * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
+ *
+ * When this function is finished, RX FIFO should be empty and TX FIFO should be
+ * full.
+ */
+static int ep93xx_spi_read_write(struct spi_master *master)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ struct spi_transfer *xfer = master->cur_msg->state;
+
+ /* read as long as RX FIFO has frames in it */
+ while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
+ ep93xx_do_read(master);
+ espi->fifo_level--;
+ }
+
+ /* write as long as TX FIFO has room */
+ while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
+ ep93xx_do_write(master);
+ espi->fifo_level++;
+ }
+
+ if (espi->rx == xfer->len)
+ return 0;
+
+ return -EINPROGRESS;
+}
+
+static enum dma_transfer_direction
+ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
+{
+ switch (dir) {
+ case DMA_TO_DEVICE:
+ return DMA_MEM_TO_DEV;
+ case DMA_FROM_DEVICE:
+ return DMA_DEV_TO_MEM;
+ default:
+ return DMA_TRANS_NONE;
+ }
+}
+
+/**
+ * ep93xx_spi_dma_prepare() - prepares a DMA transfer
+ * @master: SPI master
+ * @dir: DMA transfer direction
+ *
+ * Function configures the DMA, maps the buffer and prepares the DMA
+ * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
+ * in case of failure.
+ */
+static struct dma_async_tx_descriptor *
+ep93xx_spi_dma_prepare(struct spi_master *master,
+ enum dma_data_direction dir)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ struct spi_transfer *xfer = master->cur_msg->state;
+ struct dma_async_tx_descriptor *txd;
+ enum dma_slave_buswidth buswidth;
+ struct dma_slave_config conf;
+ struct scatterlist *sg;
+ struct sg_table *sgt;
+ struct dma_chan *chan;
+ const void *buf, *pbuf;
+ size_t len = xfer->len;
+ int i, ret, nents;
+
+ if (xfer->bits_per_word > 8)
+ buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
+ else
+ buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
+
+ memset(&conf, 0, sizeof(conf));
+ conf.direction = ep93xx_dma_data_to_trans_dir(dir);
+
+ if (dir == DMA_FROM_DEVICE) {
+ chan = espi->dma_rx;
+ buf = xfer->rx_buf;
+ sgt = &espi->rx_sgt;
+
+ conf.src_addr = espi->sspdr_phys;
+ conf.src_addr_width = buswidth;
+ } else {
+ chan = espi->dma_tx;
+ buf = xfer->tx_buf;
+ sgt = &espi->tx_sgt;
+
+ conf.dst_addr = espi->sspdr_phys;
+ conf.dst_addr_width = buswidth;
+ }
+
+ ret = dmaengine_slave_config(chan, &conf);
+ if (ret)
+ return ERR_PTR(ret);
+
+ /*
+ * We need to split the transfer into PAGE_SIZE'd chunks. This is
+ * because we are using @espi->zeropage to provide a zero RX buffer
+ * for the TX transfers and we have only allocated one page for that.
+ *
+ * For performance reasons we allocate a new sg_table only when
+ * needed. Otherwise we will re-use the current one. Eventually the
+ * last sg_table is released in ep93xx_spi_release_dma().
+ */
+
+ nents = DIV_ROUND_UP(len, PAGE_SIZE);
+ if (nents != sgt->nents) {
+ sg_free_table(sgt);
+
+ ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
+ if (ret)
+ return ERR_PTR(ret);
+ }
+
+ pbuf = buf;
+ for_each_sg(sgt->sgl, sg, sgt->nents, i) {
+ size_t bytes = min_t(size_t, len, PAGE_SIZE);
+
+ if (buf) {
+ sg_set_page(sg, virt_to_page(pbuf), bytes,
+ offset_in_page(pbuf));
+ } else {
+ sg_set_page(sg, virt_to_page(espi->zeropage),
+ bytes, 0);
+ }
+
+ pbuf += bytes;
+ len -= bytes;
+ }
+
+ if (WARN_ON(len)) {
+ dev_warn(&master->dev, "len = %zu expected 0!\n", len);
+ return ERR_PTR(-EINVAL);
+ }
+
+ nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
+ if (!nents)
+ return ERR_PTR(-ENOMEM);
+
+ txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
+ DMA_CTRL_ACK);
+ if (!txd) {
+ dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
+ return ERR_PTR(-ENOMEM);
+ }
+ return txd;
+}
+
+/**
+ * ep93xx_spi_dma_finish() - finishes with a DMA transfer
+ * @master: SPI master
+ * @dir: DMA transfer direction
+ *
+ * Function finishes with the DMA transfer. After this, the DMA buffer is
+ * unmapped.
+ */
+static void ep93xx_spi_dma_finish(struct spi_master *master,
+ enum dma_data_direction dir)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ struct dma_chan *chan;
+ struct sg_table *sgt;
+
+ if (dir == DMA_FROM_DEVICE) {
+ chan = espi->dma_rx;
+ sgt = &espi->rx_sgt;
+ } else {
+ chan = espi->dma_tx;
+ sgt = &espi->tx_sgt;
+ }
+
+ dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
+}
+
+static void ep93xx_spi_dma_callback(void *callback_param)
+{
+ struct spi_master *master = callback_param;
+
+ ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
+ ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
+
+ spi_finalize_current_transfer(master);
+}
+
+static int ep93xx_spi_dma_transfer(struct spi_master *master)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ struct dma_async_tx_descriptor *rxd, *txd;
+
+ rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
+ if (IS_ERR(rxd)) {
+ dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
+ return PTR_ERR(rxd);
+ }
+
+ txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
+ if (IS_ERR(txd)) {
+ ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
+ dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
+ return PTR_ERR(txd);
+ }
+
+ /* We are ready when RX is done */
+ rxd->callback = ep93xx_spi_dma_callback;
+ rxd->callback_param = master;
+
+ /* Now submit both descriptors and start DMA */
+ dmaengine_submit(rxd);
+ dmaengine_submit(txd);
+
+ dma_async_issue_pending(espi->dma_rx);
+ dma_async_issue_pending(espi->dma_tx);
+
+ /* signal that we need to wait for completion */
+ return 1;
+}
+
+static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
+{
+ struct spi_master *master = dev_id;
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ u32 val;
+
+ /*
+ * If we got ROR (receive overrun) interrupt we know that something is
+ * wrong. Just abort the message.
+ */
+ if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
+ /* clear the overrun interrupt */
+ writel(0, espi->mmio + SSPICR);
+ dev_warn(&master->dev,
+ "receive overrun, aborting the message\n");
+ master->cur_msg->status = -EIO;
+ } else {
+ /*
+ * Interrupt is either RX (RIS) or TX (TIS). For both cases we
+ * simply execute next data transfer.
+ */
+ if (ep93xx_spi_read_write(master)) {
+ /*
+ * In normal case, there still is some processing left
+ * for current transfer. Let's wait for the next
+ * interrupt then.
+ */
+ return IRQ_HANDLED;
+ }
+ }
+
+ /*
+ * Current transfer is finished, either with error or with success. In
+ * any case we disable interrupts and notify the worker to handle
+ * any post-processing of the message.
+ */
+ val = readl(espi->mmio + SSPCR1);
+ val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
+ writel(val, espi->mmio + SSPCR1);
+
+ spi_finalize_current_transfer(master);
+
+ return IRQ_HANDLED;
+}
+
+static int ep93xx_spi_transfer_one(struct spi_master *master,
+ struct spi_device *spi,
+ struct spi_transfer *xfer)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ u32 val;
+ int ret;
+
+ ret = ep93xx_spi_chip_setup(master, spi, xfer);
+ if (ret) {
+ dev_err(&master->dev, "failed to setup chip for transfer\n");
+ return ret;
+ }
+
+ master->cur_msg->state = xfer;
+ espi->rx = 0;
+ espi->tx = 0;
+
+ /*
+ * There is no point of setting up DMA for the transfers which will
+ * fit into the FIFO and can be transferred with a single interrupt.
+ * So in these cases we will be using PIO and don't bother for DMA.
+ */
+ if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
+ return ep93xx_spi_dma_transfer(master);
+
+ /* Using PIO so prime the TX FIFO and enable interrupts */
+ ep93xx_spi_read_write(master);
+
+ val = readl(espi->mmio + SSPCR1);
+ val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
+ writel(val, espi->mmio + SSPCR1);
+
+ /* signal that we need to wait for completion */
+ return 1;
+}
+
+static int ep93xx_spi_prepare_message(struct spi_master *master,
+ struct spi_message *msg)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ unsigned long timeout;
+
+ /*
+ * Just to be sure: flush any data from RX FIFO.
+ */
+ timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
+ while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
+ if (time_after(jiffies, timeout)) {
+ dev_warn(&master->dev,
+ "timeout while flushing RX FIFO\n");
+ return -ETIMEDOUT;
+ }
+ readl(espi->mmio + SSPDR);
+ }
+
+ /*
+ * We explicitly handle FIFO level. This way we don't have to check TX
+ * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
+ */
+ espi->fifo_level = 0;
+
+ return 0;
+}
+
+static int ep93xx_spi_prepare_hardware(struct spi_master *master)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ u32 val;
+ int ret;
+
+ ret = clk_prepare_enable(espi->clk);
+ if (ret)
+ return ret;
+
+ val = readl(espi->mmio + SSPCR1);
+ val |= SSPCR1_SSE;
+ writel(val, espi->mmio + SSPCR1);
+
+ return 0;
+}
+
+static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
+{
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+ u32 val;
+
+ val = readl(espi->mmio + SSPCR1);
+ val &= ~SSPCR1_SSE;
+ writel(val, espi->mmio + SSPCR1);
+
+ clk_disable_unprepare(espi->clk);
+
+ return 0;
+}
+
+static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
+{
+ if (ep93xx_dma_chan_is_m2p(chan))
+ return false;
+
+ chan->private = filter_param;
+ return true;
+}
+
+static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
+{
+ dma_cap_mask_t mask;
+ int ret;
+
+ espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
+ if (!espi->zeropage)
+ return -ENOMEM;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+
+ espi->dma_rx_data.port = EP93XX_DMA_SSP;
+ espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
+ espi->dma_rx_data.name = "ep93xx-spi-rx";
+
+ espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
+ &espi->dma_rx_data);
+ if (!espi->dma_rx) {
+ ret = -ENODEV;
+ goto fail_free_page;
+ }
+
+ espi->dma_tx_data.port = EP93XX_DMA_SSP;
+ espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
+ espi->dma_tx_data.name = "ep93xx-spi-tx";
+
+ espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
+ &espi->dma_tx_data);
+ if (!espi->dma_tx) {
+ ret = -ENODEV;
+ goto fail_release_rx;
+ }
+
+ return 0;
+
+fail_release_rx:
+ dma_release_channel(espi->dma_rx);
+ espi->dma_rx = NULL;
+fail_free_page:
+ free_page((unsigned long)espi->zeropage);
+
+ return ret;
+}
+
+static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
+{
+ if (espi->dma_rx) {
+ dma_release_channel(espi->dma_rx);
+ sg_free_table(&espi->rx_sgt);
+ }
+ if (espi->dma_tx) {
+ dma_release_channel(espi->dma_tx);
+ sg_free_table(&espi->tx_sgt);
+ }
+
+ if (espi->zeropage)
+ free_page((unsigned long)espi->zeropage);
+}
+
+static int ep93xx_spi_probe(struct platform_device *pdev)
+{
+ struct spi_master *master;
+ struct ep93xx_spi_info *info;
+ struct ep93xx_spi *espi;
+ struct resource *res;
+ int irq;
+ int error;
+
+ info = dev_get_platdata(&pdev->dev);
+ if (!info) {
+ dev_err(&pdev->dev, "missing platform data\n");
+ return -EINVAL;
+ }
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return -EBUSY;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res) {
+ dev_err(&pdev->dev, "unable to get iomem resource\n");
+ return -ENODEV;
+ }
+
+ master = spi_alloc_master(&pdev->dev, sizeof(*espi));
+ if (!master)
+ return -ENOMEM;
+
+ master->use_gpio_descriptors = true;
+ master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
+ master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
+ master->prepare_message = ep93xx_spi_prepare_message;
+ master->transfer_one = ep93xx_spi_transfer_one;
+ master->bus_num = pdev->id;
+ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
+ master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
+ /*
+ * The SPI core will count the number of GPIO descriptors to figure
+ * out the number of chip selects available on the platform.
+ */
+ master->num_chipselect = 0;
+
+ platform_set_drvdata(pdev, master);
+
+ espi = spi_master_get_devdata(master);
+
+ espi->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(espi->clk)) {
+ dev_err(&pdev->dev, "unable to get spi clock\n");
+ error = PTR_ERR(espi->clk);
+ goto fail_release_master;
+ }
+
+ /*
+ * Calculate maximum and minimum supported clock rates
+ * for the controller.
+ */
+ master->max_speed_hz = clk_get_rate(espi->clk) / 2;
+ master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
+
+ espi->sspdr_phys = res->start + SSPDR;
+
+ espi->mmio = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(espi->mmio)) {
+ error = PTR_ERR(espi->mmio);
+ goto fail_release_master;
+ }
+
+ error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
+ 0, "ep93xx-spi", master);
+ if (error) {
+ dev_err(&pdev->dev, "failed to request irq\n");
+ goto fail_release_master;
+ }
+
+ if (info->use_dma && ep93xx_spi_setup_dma(espi))
+ dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
+
+ /* make sure that the hardware is disabled */
+ writel(0, espi->mmio + SSPCR1);
+
+ error = devm_spi_register_master(&pdev->dev, master);
+ if (error) {
+ dev_err(&pdev->dev, "failed to register SPI master\n");
+ goto fail_free_dma;
+ }
+
+ dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
+ (unsigned long)res->start, irq);
+
+ return 0;
+
+fail_free_dma:
+ ep93xx_spi_release_dma(espi);
+fail_release_master:
+ spi_master_put(master);
+
+ return error;
+}
+
+static int ep93xx_spi_remove(struct platform_device *pdev)
+{
+ struct spi_master *master = platform_get_drvdata(pdev);
+ struct ep93xx_spi *espi = spi_master_get_devdata(master);
+
+ ep93xx_spi_release_dma(espi);
+
+ return 0;
+}
+
+static struct platform_driver ep93xx_spi_driver = {
+ .driver = {
+ .name = "ep93xx-spi",
+ },
+ .probe = ep93xx_spi_probe,
+ .remove = ep93xx_spi_remove,
+};
+module_platform_driver(ep93xx_spi_driver);
+
+MODULE_DESCRIPTION("EP93xx SPI Controller driver");
+MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:ep93xx-spi");