aboutsummaryrefslogtreecommitdiff
path: root/drivers/staging/pi433/Documentation
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/staging/pi433/Documentation
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'drivers/staging/pi433/Documentation')
-rw-r--r--drivers/staging/pi433/Documentation/devicetree/pi433-overlay.dtso48
-rw-r--r--drivers/staging/pi433/Documentation/devicetree/pi433.txt62
-rw-r--r--drivers/staging/pi433/Documentation/pi433.txt274
3 files changed, 384 insertions, 0 deletions
diff --git a/drivers/staging/pi433/Documentation/devicetree/pi433-overlay.dtso b/drivers/staging/pi433/Documentation/devicetree/pi433-overlay.dtso
new file mode 100644
index 000000000..096137fcd
--- /dev/null
+++ b/drivers/staging/pi433/Documentation/devicetree/pi433-overlay.dtso
@@ -0,0 +1,48 @@
+// Definitions for Pi433
+/dts-v1/;
+/plugin/;
+
+/ {
+ compatible = "brcm,bcm2835", "brcm,bcm2708", "brcm,bcm2709";
+};
+
+&spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ status = "okay";
+
+ spidev@0{
+ reg = <0>;
+ status = "disabled";
+ };
+
+ spidev@1{
+ reg = <1>;
+ status = "disabled";
+ };
+};
+
+&gpio {
+ pi433_pins: pi433_pins {
+ brcm,pins = <7 25 24>;
+ brcm,function = <0 0 0>; // in in in
+ };
+};
+
+&spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ status = "okay";
+
+ pi433: pi433@0 {
+ compatible = "Smarthome-Wolf,pi433";
+ reg = <0>;
+ spi-max-frequency = <10000000>;
+ status = "okay";
+
+ pinctrl-0 = <&pi433_pins>;
+ DIO0-gpio = <&gpio 24 0>;
+ DIO1-gpio = <&gpio 25 0>;
+ DIO2-gpio = <&gpio 7 0>;
+ };
+};
diff --git a/drivers/staging/pi433/Documentation/devicetree/pi433.txt b/drivers/staging/pi433/Documentation/devicetree/pi433.txt
new file mode 100644
index 000000000..d317c0ec3
--- /dev/null
+++ b/drivers/staging/pi433/Documentation/devicetree/pi433.txt
@@ -0,0 +1,62 @@
+* Smarthome-Wolf Pi433 - a 433MHz radio module/shield for Raspberry Pi (see www.pi433.de)
+
+Required properties:
+- compatible: must be "Smarthome-Wolf,pi433"
+- reg: chip select of SPI Interface
+- DIOx-gpio must be dedicated to the GPIO, connected with DIOx of the RFM69 module
+
+
+Example:
+
+With the following lines in gpio-section, the gpio pins, connected with pi433 are
+reserved/declared.
+
+&gpio{
+ [...]
+
+ pi433_pins: pi433_pins {
+ brcm,pins = <7 25 24>;
+ brcm,function = <0 0 0>; // in in in
+ };
+
+ [...]
+}
+
+With the following lines in spi section, the device pi433 is declared.
+It consists of the three gpio pins and an spi interface (here chip select 0)
+
+&spi0{
+ [...]
+
+ pi433: pi433@0 {
+ compatible = "Smarthome-Wolf,pi433";
+ reg = <0>; /* CE 0 */
+ #address-cells = <1>;
+ #size-cells = <0>;
+ spi-max-frequency = <10000000>;
+
+ pinctrl-0 = <&pi433_pins>;
+ DIO0-gpio = <&gpio 24 0>;
+ DIO1-gpio = <&gpio 25 0>;
+ DIO2-gpio = <&gpio 7 0>;
+ };
+}
+
+
+
+For Raspbian users only
+=======================
+Since Raspbian supports device tree overlays, you may use an overlay instead
+of editing your boards device tree.
+To use the overlay, you need to compile the file pi433-overlay.dtso which can
+be found alongside this documentation.
+The file needs to be compiled - either manually or by integration in your kernel
+source tree. For a manual compile, you may use a command line like the following:
+'linux/scripts/dtc/dtc -@ -I dts -O dtb -o pi433.dtbo pi433-overlay.dtso'
+
+For compiling inside of the kernel tree, you need to copy pi433-overlay.dtso to
+arch/arm/boot/dts/overlays and you need to add the file to the list of files
+in the Makefile over there. Execute 'make dtbs' in kernel tree root to make the
+kernel make files compile the device tree overlay for you.
+
+
diff --git a/drivers/staging/pi433/Documentation/pi433.txt b/drivers/staging/pi433/Documentation/pi433.txt
new file mode 100644
index 000000000..4a0d34b4a
--- /dev/null
+++ b/drivers/staging/pi433/Documentation/pi433.txt
@@ -0,0 +1,274 @@
+=====
+Pi433
+=====
+
+
+Introduction
+============
+This driver is for controlling pi433, a radio module for the Raspberry Pi
+(www.pi433.de). It supports transmission and reception. It can be opened
+by multiple applications for transmission and reception. While transmit
+jobs are queued and processed automatically in the background, the first
+application asking for reception will block out all other applications
+until something gets received terminates the read request.
+The driver supports on the fly reloading of the hardware fifo of the rf
+chip, thus enabling for much longer telegrams than the hardware fifo size.
+
+Description of driver operation
+===============================
+
+a) transmission
+
+Each transmission can take place with a different configuration of the rf
+module. Therefore each application can set its own set of parameters. The driver
+takes care, that each transmission takes place with the parameterset of the
+application, that requests the transmission. To allow the transmission to take
+place in the background, a tx thread is introduced.
+The transfer of data from the main thread to the tx thread is realised by a
+kfifo. With each write request of an application, the passed in data and the
+corresponding parameter set gets written to the kfifo.
+On the other "side" of the kfifo, the tx thread continuously checks, whether the
+kfifo is empty. If not, it gets one set of config and data from the kfifo. If
+there is no receive request or the receiver is still waiting for something in
+the air, the rf module is set to standby, the parameters for transmission gets
+set, the hardware fifo of the rf chip gets preloaded and the transmission gets
+started. Upon hardware fifo threshold interrupt it gets reloaded, thus enabling
+much longer telegrams than the hardware fifo size. If the telegram is sent and there
+is more data available in the kfifo, the procedure is repeated. If not the
+transmission cycle ends.
+
+b) reception
+
+Since there is only one application allowed to receive data at a time, for
+reception there is only one configuration set.
+As soon as an application sets a request for receiving a telegram, the reception
+configuration set is written to the rf module and it gets set into receiving mode.
+Now the driver is waiting, that a predefined RSSI level (signal strength at the
+receiver) is reached. Until this hasn't happened, the reception can be
+interrupted by the transmission thread at any time to insert a transmission cycle.
+As soon as the predefined RSSI level is met, a receiving cycle starts. Similar
+as described for the transmission cycle the read out of the hardware fifo is done
+dynamically. Upon each hardware fifo threshold interrupt, a portion of data gets
+read. So also for reception it is possible to receive more data than the hardware
+fifo can hold.
+
+
+Driver API
+==========
+
+The driver is currently implemented as a character device. Therefore it supports
+the calls open, ioctl, read, write and close.
+
+
+params for ioctl
+----------------
+
+There are four options:
+PI433_IOC_RD_TX_CFG - get the transmission parameters from the driver
+PI433_IOC_WR_TX_CFG - set the transmission parameters
+PI433_IOC_RD_RX_CFG - get the receiving parameters from the driver
+PI433_IOC_WR_RX_CFG - set the receiving parameters
+
+The tx configuration is transferred via struct pi433_tx_cfg, the parameterset for transmission.
+It is divided into two sections: rf parameters and packet format.
+
+rf params:
+ frequency
+ frequency used for transmission.
+ Allowed values: 433050000...434790000
+ bit_rate
+ bit rate used for transmission.
+ Allowed values: #####
+ dev_frequency
+ frequency deviation in case of FSK.
+ Allowed values: 600...500000
+ modulation
+ FSK - frequency shift key
+ OOK - On-Off-key
+ modShaping
+ shapingOff - no shaping
+ shaping1_0 - gauss filter with BT 1 (FSK only)
+ shaping0_5 - gauss filter with BT 0.5 (FSK only)
+ shaping0_3 - gauss filter with BT 0.3 (FSK only)
+ shapingBR - filter cut off at BR (OOK only)
+ shaping2BR - filter cut off at 2*BR (OOK only)
+ pa_ramp (FSK only)
+ ramp3400 - amp ramps up in 3.4ms
+ ramp2000 - amp ramps up in 2.0ms
+ ramp1000 - amp ramps up in 1ms
+ ramp500 - amp ramps up in 500us
+ ramp250 - amp ramps up in 250us
+ ramp125 - amp ramps up in 125us
+ ramp100 - amp ramps up in 100us
+ ramp62 - amp ramps up in 62us
+ ramp50 - amp ramps up in 50us
+ ramp40 - amp ramps up in 40us
+ ramp31 - amp ramps up in 31us
+ ramp25 - amp ramps up in 25us
+ ramp20 - amp ramps up in 20us
+ ramp15 - amp ramps up in 15us
+ ramp12 - amp ramps up in 12us
+ ramp10 - amp ramps up in 10us
+ tx_start_condition
+ fifo_level - transmission starts, if fifo is filled to
+ threshold level
+ fifo_not_empty - transmission starts, as soon as there is one
+ byte in internal fifo
+ repetitions
+ This gives the option, to send a telegram multiple times. Default: 1
+
+packet format:
+ enable_preamble
+ optionOn - a preamble will be automatically generated
+ optionOff - no preamble will be generated
+ enable_sync
+ optionOn - a sync word will be automatically added to
+ the telegram after the preamble
+ optionOff - no sync word will be added
+ Attention: While possible to generate sync without preamble, the
+ receiver won't be able to detect the sync without preamble.
+ enable_length_byte
+ optionOn - the length of the telegram will be automatically
+ added to the telegram. It's part of the payload
+ optionOff - no length information will be automatically added
+ to the telegram.
+ Attention: For telegram length over 255 bytes, this option can't be used
+ Attention: should be used in combination with sync, only
+ enable_address_byte
+ optionOn - the address byte will be automatically added to the
+ telegram. It's part of the payload
+ optionOff - the address byte will not be added to the telegram.
+ The address byte can be used for address filtering, so the receiver
+ will only receive telegrams with a given address byte.
+ Attention: should be used in combination with sync, only
+ enable_crc
+ optionOn - an crc will be automatically calculated over the
+ payload of the telegram and added to the telegram
+ after payload.
+ optionOff - no crc will be calculated
+ preamble_length
+ length of the preamble. Allowed values: 0...65536
+ sync_length
+ length of the sync word. Allowed values: 0...8
+ fixed_message_length
+ length of the payload of the telegram. Will override the length
+ given by the buffer, passed in with the write command. Will be
+ ignored if set to zero.
+ sync_pattern[8]
+ contains up to eight values, that are used as the sync pattern
+ on sync option
+ address_byte
+ one byte, used as address byte on address byte option.
+
+
+The rx configuration is transferred via struct pi433_rx_cfg, the parameterset for receiving. It is divided into two sections: rf parameters and packet format.
+
+rf params:
+ frequency
+ frequency used for transmission.
+ Allowed values: 433050000...434790000
+ bit_rate
+ bit rate used for transmission.
+ Allowed values: #####
+ dev_frequency
+ frequency deviation in case of FSK.
+ Allowed values: 600...500000
+ modulation
+ FSK - frequency shift key
+ OOK - on off key
+ rssi_threshold
+ threshold value for the signal strength on the receiver input.
+ If this value is exceeded, a reception cycle starts
+ Allowed values: 0...255
+ threshold_decrement
+ in order to adapt to different levels of singnal strength, over
+ time the receiver gets more and more sensitive. This value
+ determs, how fast the sensitivity increases.
+ step_0_5db - increase in 0,5dB steps
+ step_1_0db - increase in 1 db steps
+ step_1_5db - increase in 1,5dB steps
+ step_2_0db - increase in 2 db steps
+ step_3_0db - increase in 3 db steps
+ step_4_0db - increase in 4 db steps
+ step_5_0db - increase in 5 db steps
+ step_6_0db - increase in 6 db steps
+ antenna_impedance
+ sets the electrical adoption of the antenna
+ fifty_ohm - for antennas with an impedance of 50Ohm
+ two_hundred_ohm - for antennas with an impedance of 200Ohm
+ lna_gain
+ sets the gain of the low noise amp
+ automatic - lna gain is determined by an agc
+ max - lna gain is set to maximum
+ max_minus_6 - lna gain is set to 6db below max
+ max_minus_12 - lna gain is set to 12db below max
+ max_minus_24 - lna gain is set to 24db below max
+ max_minus_36 - lna gain is set to 36db below max
+ max_minus_48 - lna gain is set to 48db below max
+ bw_mantisse
+ sets the bandwidth of the channel filter - part one: mantisse.
+ mantisse16 - mantisse is set to 16
+ mantisse20 - mantisse is set to 20
+ mantisse24 - mantisse is set to 24
+ bw_exponent
+ sets the bandwidth of the channel filter - part two: exponent.
+ Allowd values: 0...7
+ dagc;
+ operation mode of the digital automatic gain control
+ normal_mode
+ improve
+ improve_for_low_modulation_index
+
+ packet format:
+ enable_sync
+ optionOn - sync detection is enabled. If configured sync pattern
+ isn't found, telegram will be internally discarded
+ optionOff - sync detection is disabled.
+ enable_length_byte
+ optionOn - First byte of payload will be used as a length byte,
+ regardless of the amount of bytes that were requested
+ by the read request.
+ optionOff - Number of bytes to be read will be set according to
+ amount of bytes that were requested by the read request.
+ Attention: should be used in combination with sync, only
+ enable_address_filtering;
+ filtering_off - no address filtering will take place
+ node_address - all telegrams, not matching the node
+ address will be internally discarded
+ node_or_broadcast_address - all telegrams, neither matching the
+ node, nor the broadcast address will
+ be internally discarded
+ Attention: Sync option must be enabled in order to use this feature
+ enable_crc
+ optionOn - a crc will be calculated over the payload of
+ the telegram, that was received. If the
+ calculated crc doesn't match to two bytes,
+ that follow the payload, the telegram will be
+ internally discarded.
+ Attention: This option is only operational if sync on and fixed length
+ or length byte is used
+ sync_length
+ Gives the length of the payload.
+ Attention: This setting must meet the setting of the transmitter,
+ if sync option is used.
+ fixed_message_length
+ Overrides the telegram length either given by the first byte of
+ payload or by the read request.
+ bytes_to_drop
+ gives the number of bytes, that will be dropped before transferring
+ data to the read buffer
+ This option is only useful if all packet helper are switched
+ off and the rf chip is used in raw receiving mode. This may be
+ needed, if a telegram of a third party device should be received,
+ using a protocol not compatible with the packet engine of the rf69 chip.
+ sync_pattern[8]
+ contains up to eight values, that are used as the sync pattern
+ on sync option.
+ This setting must meet the configuration of the transmitting device,
+ if sync option is enabled.
+ node_address
+ one byte, used as node address byte on address byte option.
+ broadcast_address
+ one byte, used as broadcast address byte on address byte option.
+
+