aboutsummaryrefslogtreecommitdiff
path: root/drivers/usb/gadget/function/u_fs.h
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/usb/gadget/function/u_fs.h
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'drivers/usb/gadget/function/u_fs.h')
-rw-r--r--drivers/usb/gadget/function/u_fs.h303
1 files changed, 303 insertions, 0 deletions
diff --git a/drivers/usb/gadget/function/u_fs.h b/drivers/usb/gadget/function/u_fs.h
new file mode 100644
index 000000000..f102ec23f
--- /dev/null
+++ b/drivers/usb/gadget/function/u_fs.h
@@ -0,0 +1,303 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * u_fs.h
+ *
+ * Utility definitions for the FunctionFS
+ *
+ * Copyright (c) 2013 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com
+ *
+ * Author: Andrzej Pietrasiewicz <andrzejtp2010@gmail.com>
+ */
+
+#ifndef U_FFS_H
+#define U_FFS_H
+
+#include <linux/usb/composite.h>
+#include <linux/list.h>
+#include <linux/mutex.h>
+#include <linux/workqueue.h>
+#include <linux/refcount.h>
+
+#ifdef VERBOSE_DEBUG
+#ifndef pr_vdebug
+# define pr_vdebug pr_debug
+#endif /* pr_vdebug */
+# define ffs_dump_mem(prefix, ptr, len) \
+ print_hex_dump_bytes(pr_fmt(prefix ": "), DUMP_PREFIX_NONE, ptr, len)
+#else
+#ifndef pr_vdebug
+# define pr_vdebug(...) do { } while (0)
+#endif /* pr_vdebug */
+# define ffs_dump_mem(prefix, ptr, len) do { } while (0)
+#endif /* VERBOSE_DEBUG */
+
+#define ENTER() pr_vdebug("%s()\n", __func__)
+
+struct f_fs_opts;
+
+struct ffs_dev {
+ struct ffs_data *ffs_data;
+ struct f_fs_opts *opts;
+ struct list_head entry;
+
+ char name[41];
+
+ bool mounted;
+ bool desc_ready;
+ bool single;
+
+ int (*ffs_ready_callback)(struct ffs_data *ffs);
+ void (*ffs_closed_callback)(struct ffs_data *ffs);
+ void *(*ffs_acquire_dev_callback)(struct ffs_dev *dev);
+ void (*ffs_release_dev_callback)(struct ffs_dev *dev);
+};
+
+extern struct mutex ffs_lock;
+
+static inline void ffs_dev_lock(void)
+{
+ mutex_lock(&ffs_lock);
+}
+
+static inline void ffs_dev_unlock(void)
+{
+ mutex_unlock(&ffs_lock);
+}
+
+int ffs_name_dev(struct ffs_dev *dev, const char *name);
+int ffs_single_dev(struct ffs_dev *dev);
+
+struct ffs_epfile;
+struct ffs_function;
+
+enum ffs_state {
+ /*
+ * Waiting for descriptors and strings.
+ *
+ * In this state no open(2), read(2) or write(2) on epfiles
+ * may succeed (which should not be the problem as there
+ * should be no such files opened in the first place).
+ */
+ FFS_READ_DESCRIPTORS,
+ FFS_READ_STRINGS,
+
+ /*
+ * We've got descriptors and strings. We are or have called
+ * functionfs_ready_callback(). functionfs_bind() may have
+ * been called but we don't know.
+ *
+ * This is the only state in which operations on epfiles may
+ * succeed.
+ */
+ FFS_ACTIVE,
+
+ /*
+ * Function is visible to host, but it's not functional. All
+ * setup requests are stalled and transfers on another endpoints
+ * are refused. All epfiles, except ep0, are deleted so there
+ * is no way to perform any operations on them.
+ *
+ * This state is set after closing all functionfs files, when
+ * mount parameter "no_disconnect=1" has been set. Function will
+ * remain in deactivated state until filesystem is umounted or
+ * ep0 is opened again. In the second case functionfs state will
+ * be reset, and it will be ready for descriptors and strings
+ * writing.
+ *
+ * This is useful only when functionfs is composed to gadget
+ * with another function which can perform some critical
+ * operations, and it's strongly desired to have this operations
+ * completed, even after functionfs files closure.
+ */
+ FFS_DEACTIVATED,
+
+ /*
+ * All endpoints have been closed. This state is also set if
+ * we encounter an unrecoverable error. The only
+ * unrecoverable error is situation when after reading strings
+ * from user space we fail to initialise epfiles or
+ * functionfs_ready_callback() returns with error (<0).
+ *
+ * In this state no open(2), read(2) or write(2) (both on ep0
+ * as well as epfile) may succeed (at this point epfiles are
+ * unlinked and all closed so this is not a problem; ep0 is
+ * also closed but ep0 file exists and so open(2) on ep0 must
+ * fail).
+ */
+ FFS_CLOSING
+};
+
+enum ffs_setup_state {
+ /* There is no setup request pending. */
+ FFS_NO_SETUP,
+ /*
+ * User has read events and there was a setup request event
+ * there. The next read/write on ep0 will handle the
+ * request.
+ */
+ FFS_SETUP_PENDING,
+ /*
+ * There was event pending but before user space handled it
+ * some other event was introduced which canceled existing
+ * setup. If this state is set read/write on ep0 return
+ * -EIDRM. This state is only set when adding event.
+ */
+ FFS_SETUP_CANCELLED
+};
+
+struct ffs_data {
+ struct usb_gadget *gadget;
+
+ /*
+ * Protect access read/write operations, only one read/write
+ * at a time. As a consequence protects ep0req and company.
+ * While setup request is being processed (queued) this is
+ * held.
+ */
+ struct mutex mutex;
+
+ /*
+ * Protect access to endpoint related structures (basically
+ * usb_ep_queue(), usb_ep_dequeue(), etc. calls) except for
+ * endpoint zero.
+ */
+ spinlock_t eps_lock;
+
+ /*
+ * XXX REVISIT do we need our own request? Since we are not
+ * handling setup requests immediately user space may be so
+ * slow that another setup will be sent to the gadget but this
+ * time not to us but another function and then there could be
+ * a race. Is that the case? Or maybe we can use cdev->req
+ * after all, maybe we just need some spinlock for that?
+ */
+ struct usb_request *ep0req; /* P: mutex */
+ struct completion ep0req_completion; /* P: mutex */
+
+ /* reference counter */
+ refcount_t ref;
+ /* how many files are opened (EP0 and others) */
+ atomic_t opened;
+
+ /* EP0 state */
+ enum ffs_state state;
+
+ /*
+ * Possible transitions:
+ * + FFS_NO_SETUP -> FFS_SETUP_PENDING -- P: ev.waitq.lock
+ * happens only in ep0 read which is P: mutex
+ * + FFS_SETUP_PENDING -> FFS_NO_SETUP -- P: ev.waitq.lock
+ * happens only in ep0 i/o which is P: mutex
+ * + FFS_SETUP_PENDING -> FFS_SETUP_CANCELLED -- P: ev.waitq.lock
+ * + FFS_SETUP_CANCELLED -> FFS_NO_SETUP -- cmpxchg
+ *
+ * This field should never be accessed directly and instead
+ * ffs_setup_state_clear_cancelled function should be used.
+ */
+ enum ffs_setup_state setup_state;
+
+ /* Events & such. */
+ struct {
+ u8 types[4];
+ unsigned short count;
+ /* XXX REVISIT need to update it in some places, or do we? */
+ unsigned short can_stall;
+ struct usb_ctrlrequest setup;
+
+ wait_queue_head_t waitq;
+ } ev; /* the whole structure, P: ev.waitq.lock */
+
+ /* Flags */
+ unsigned long flags;
+#define FFS_FL_CALL_CLOSED_CALLBACK 0
+#define FFS_FL_BOUND 1
+
+ /* For waking up blocked threads when function is enabled. */
+ wait_queue_head_t wait;
+
+ /* Active function */
+ struct ffs_function *func;
+
+ /*
+ * Device name, write once when file system is mounted.
+ * Intended for user to read if she wants.
+ */
+ const char *dev_name;
+ /* Private data for our user (ie. gadget). Managed by user. */
+ void *private_data;
+
+ /* filled by __ffs_data_got_descs() */
+ /*
+ * raw_descs is what you kfree, real_descs points inside of raw_descs,
+ * where full speed, high speed and super speed descriptors start.
+ * real_descs_length is the length of all those descriptors.
+ */
+ const void *raw_descs_data;
+ const void *raw_descs;
+ unsigned raw_descs_length;
+ unsigned fs_descs_count;
+ unsigned hs_descs_count;
+ unsigned ss_descs_count;
+ unsigned ms_os_descs_count;
+ unsigned ms_os_descs_ext_prop_count;
+ unsigned ms_os_descs_ext_prop_name_len;
+ unsigned ms_os_descs_ext_prop_data_len;
+ void *ms_os_descs_ext_prop_avail;
+ void *ms_os_descs_ext_prop_name_avail;
+ void *ms_os_descs_ext_prop_data_avail;
+
+ unsigned user_flags;
+
+#define FFS_MAX_EPS_COUNT 31
+ u8 eps_addrmap[FFS_MAX_EPS_COUNT];
+
+ unsigned short strings_count;
+ unsigned short interfaces_count;
+ unsigned short eps_count;
+ unsigned short _pad1;
+
+ /* filled by __ffs_data_got_strings() */
+ /* ids in stringtabs are set in functionfs_bind() */
+ const void *raw_strings;
+ struct usb_gadget_strings **stringtabs;
+
+ /*
+ * File system's super block, write once when file system is
+ * mounted.
+ */
+ struct super_block *sb;
+
+ /* File permissions, written once when fs is mounted */
+ struct ffs_file_perms {
+ umode_t mode;
+ kuid_t uid;
+ kgid_t gid;
+ } file_perms;
+
+ struct eventfd_ctx *ffs_eventfd;
+ struct workqueue_struct *io_completion_wq;
+ bool no_disconnect;
+ struct work_struct reset_work;
+
+ /*
+ * The endpoint files, filled by ffs_epfiles_create(),
+ * destroyed by ffs_epfiles_destroy().
+ */
+ struct ffs_epfile *epfiles;
+};
+
+
+struct f_fs_opts {
+ struct usb_function_instance func_inst;
+ struct ffs_dev *dev;
+ unsigned refcnt;
+ bool no_configfs;
+};
+
+static inline struct f_fs_opts *to_f_fs_opts(struct usb_function_instance *fi)
+{
+ return container_of(fi, struct f_fs_opts, func_inst);
+}
+
+#endif /* U_FFS_H */