aboutsummaryrefslogtreecommitdiff
path: root/fs/hpfs/hpfs.h
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /fs/hpfs/hpfs.h
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'fs/hpfs/hpfs.h')
-rw-r--r--fs/hpfs/hpfs.h561
1 files changed, 561 insertions, 0 deletions
diff --git a/fs/hpfs/hpfs.h b/fs/hpfs/hpfs.h
new file mode 100644
index 000000000..281dec8f6
--- /dev/null
+++ b/fs/hpfs/hpfs.h
@@ -0,0 +1,561 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * linux/fs/hpfs/hpfs.h
+ *
+ * HPFS structures by Chris Smith, 1993
+ *
+ * a little bit modified by Mikulas Patocka, 1998-1999
+ */
+
+/* The paper
+
+ Duncan, Roy
+ Design goals and implementation of the new High Performance File System
+ Microsoft Systems Journal Sept 1989 v4 n5 p1(13)
+
+ describes what HPFS looked like when it was new, and it is the source
+ of most of the information given here. The rest is conjecture.
+
+ For definitive information on the Duncan paper, see it, not this file.
+ For definitive information on HPFS, ask somebody else -- this is guesswork.
+ There are certain to be many mistakes. */
+
+#if !defined(__LITTLE_ENDIAN) && !defined(__BIG_ENDIAN)
+#error unknown endian
+#endif
+
+/* Notation */
+
+typedef u32 secno; /* sector number, partition relative */
+
+typedef secno dnode_secno; /* sector number of a dnode */
+typedef secno fnode_secno; /* sector number of an fnode */
+typedef secno anode_secno; /* sector number of an anode */
+
+typedef u32 time32_t; /* 32-bit time_t type */
+
+/* sector 0 */
+
+/* The boot block is very like a FAT boot block, except that the
+ 29h signature byte is 28h instead, and the ID string is "HPFS". */
+
+#define BB_MAGIC 0xaa55
+
+struct hpfs_boot_block
+{
+ u8 jmp[3];
+ u8 oem_id[8];
+ u8 bytes_per_sector[2]; /* 512 */
+ u8 sectors_per_cluster;
+ u8 n_reserved_sectors[2];
+ u8 n_fats;
+ u8 n_rootdir_entries[2];
+ u8 n_sectors_s[2];
+ u8 media_byte;
+ __le16 sectors_per_fat;
+ __le16 sectors_per_track;
+ __le16 heads_per_cyl;
+ __le32 n_hidden_sectors;
+ __le32 n_sectors_l; /* size of partition */
+ u8 drive_number;
+ u8 mbz;
+ u8 sig_28h; /* 28h */
+ u8 vol_serno[4];
+ u8 vol_label[11];
+ u8 sig_hpfs[8]; /* "HPFS " */
+ u8 pad[448];
+ __le16 magic; /* aa55 */
+};
+
+
+/* sector 16 */
+
+/* The super block has the pointer to the root directory. */
+
+#define SB_MAGIC 0xf995e849
+
+struct hpfs_super_block
+{
+ __le32 magic; /* f995 e849 */
+ __le32 magic1; /* fa53 e9c5, more magic? */
+ u8 version; /* version of a filesystem usually 2 */
+ u8 funcversion; /* functional version - oldest version
+ of filesystem that can understand
+ this disk */
+ __le16 zero; /* 0 */
+ __le32 root; /* fnode of root directory */
+ __le32 n_sectors; /* size of filesystem */
+ __le32 n_badblocks; /* number of bad blocks */
+ __le32 bitmaps; /* pointers to free space bit maps */
+ __le32 zero1; /* 0 */
+ __le32 badblocks; /* bad block list */
+ __le32 zero3; /* 0 */
+ __le32 last_chkdsk; /* date last checked, 0 if never */
+ __le32 last_optimize; /* date last optimized, 0 if never */
+ __le32 n_dir_band; /* number of sectors in dir band */
+ __le32 dir_band_start; /* first sector in dir band */
+ __le32 dir_band_end; /* last sector in dir band */
+ __le32 dir_band_bitmap; /* free space map, 1 dnode per bit */
+ u8 volume_name[32]; /* not used */
+ __le32 user_id_table; /* 8 preallocated sectors - user id */
+ u32 zero6[103]; /* 0 */
+};
+
+
+/* sector 17 */
+
+/* The spare block has pointers to spare sectors. */
+
+#define SP_MAGIC 0xf9911849
+
+struct hpfs_spare_block
+{
+ __le32 magic; /* f991 1849 */
+ __le32 magic1; /* fa52 29c5, more magic? */
+
+#ifdef __LITTLE_ENDIAN
+ u8 dirty: 1; /* 0 clean, 1 "improperly stopped" */
+ u8 sparedir_used: 1; /* spare dirblks used */
+ u8 hotfixes_used: 1; /* hotfixes used */
+ u8 bad_sector: 1; /* bad sector, corrupted disk (???) */
+ u8 bad_bitmap: 1; /* bad bitmap */
+ u8 fast: 1; /* partition was fast formatted */
+ u8 old_wrote: 1; /* old version wrote to partition */
+ u8 old_wrote_1: 1; /* old version wrote to partition (?) */
+#else
+ u8 old_wrote_1: 1; /* old version wrote to partition (?) */
+ u8 old_wrote: 1; /* old version wrote to partition */
+ u8 fast: 1; /* partition was fast formatted */
+ u8 bad_bitmap: 1; /* bad bitmap */
+ u8 bad_sector: 1; /* bad sector, corrupted disk (???) */
+ u8 hotfixes_used: 1; /* hotfixes used */
+ u8 sparedir_used: 1; /* spare dirblks used */
+ u8 dirty: 1; /* 0 clean, 1 "improperly stopped" */
+#endif
+
+#ifdef __LITTLE_ENDIAN
+ u8 install_dasd_limits: 1; /* HPFS386 flags */
+ u8 resynch_dasd_limits: 1;
+ u8 dasd_limits_operational: 1;
+ u8 multimedia_active: 1;
+ u8 dce_acls_active: 1;
+ u8 dasd_limits_dirty: 1;
+ u8 flag67: 2;
+#else
+ u8 flag67: 2;
+ u8 dasd_limits_dirty: 1;
+ u8 dce_acls_active: 1;
+ u8 multimedia_active: 1;
+ u8 dasd_limits_operational: 1;
+ u8 resynch_dasd_limits: 1;
+ u8 install_dasd_limits: 1; /* HPFS386 flags */
+#endif
+
+ u8 mm_contlgulty;
+ u8 unused;
+
+ __le32 hotfix_map; /* info about remapped bad sectors */
+ __le32 n_spares_used; /* number of hotfixes */
+ __le32 n_spares; /* number of spares in hotfix map */
+ __le32 n_dnode_spares_free; /* spare dnodes unused */
+ __le32 n_dnode_spares; /* length of spare_dnodes[] list,
+ follows in this block*/
+ __le32 code_page_dir; /* code page directory block */
+ __le32 n_code_pages; /* number of code pages */
+ __le32 super_crc; /* on HPFS386 and LAN Server this is
+ checksum of superblock, on normal
+ OS/2 unused */
+ __le32 spare_crc; /* on HPFS386 checksum of spareblock */
+ __le32 zero1[15]; /* unused */
+ __le32 spare_dnodes[100]; /* emergency free dnode list */
+ __le32 zero2[1]; /* room for more? */
+};
+
+/* The bad block list is 4 sectors long. The first word must be zero,
+ the remaining words give n_badblocks bad block numbers.
+ I bet you can see it coming... */
+
+#define BAD_MAGIC 0
+
+/* The hotfix map is 4 sectors long. It looks like
+
+ secno from[n_spares];
+ secno to[n_spares];
+
+ The to[] list is initialized to point to n_spares preallocated empty
+ sectors. The from[] list contains the sector numbers of bad blocks
+ which have been remapped to corresponding sectors in the to[] list.
+ n_spares_used gives the length of the from[] list. */
+
+
+/* Sectors 18 and 19 are preallocated and unused.
+ Maybe they're spares for 16 and 17, but simple substitution fails. */
+
+
+/* The code page info pointed to by the spare block consists of an index
+ block and blocks containing uppercasing tables. I don't know what
+ these are for (CHKDSK, maybe?) -- OS/2 does not seem to use them
+ itself. Linux doesn't use them either. */
+
+/* block pointed to by spareblock->code_page_dir */
+
+#define CP_DIR_MAGIC 0x494521f7
+
+struct code_page_directory
+{
+ __le32 magic; /* 4945 21f7 */
+ __le32 n_code_pages; /* number of pointers following */
+ __le32 zero1[2];
+ struct {
+ __le16 ix; /* index */
+ __le16 code_page_number; /* code page number */
+ __le32 bounds; /* matches corresponding word
+ in data block */
+ __le32 code_page_data; /* sector number of a code_page_data
+ containing c.p. array */
+ __le16 index; /* index in c.p. array in that sector*/
+ __le16 unknown; /* some unknown value; usually 0;
+ 2 in Japanese version */
+ } array[31]; /* unknown length */
+};
+
+/* blocks pointed to by code_page_directory */
+
+#define CP_DATA_MAGIC 0x894521f7
+
+struct code_page_data
+{
+ __le32 magic; /* 8945 21f7 */
+ __le32 n_used; /* # elements used in c_p_data[] */
+ __le32 bounds[3]; /* looks a bit like
+ (beg1,end1), (beg2,end2)
+ one byte each */
+ __le16 offs[3]; /* offsets from start of sector
+ to start of c_p_data[ix] */
+ struct {
+ __le16 ix; /* index */
+ __le16 code_page_number; /* code page number */
+ __le16 unknown; /* the same as in cp directory */
+ u8 map[128]; /* upcase table for chars 80..ff */
+ __le16 zero2;
+ } code_page[3];
+ u8 incognita[78];
+};
+
+
+/* Free space bitmaps are 4 sectors long, which is 16384 bits.
+ 16384 sectors is 8 meg, and each 8 meg band has a 4-sector bitmap.
+ Bit order in the maps is little-endian. 0 means taken, 1 means free.
+
+ Bit map sectors are marked allocated in the bit maps, and so are sectors
+ off the end of the partition.
+
+ Band 0 is sectors 0-3fff, its map is in sectors 18-1b.
+ Band 1 is 4000-7fff, its map is in 7ffc-7fff.
+ Band 2 is 8000-ffff, its map is in 8000-8003.
+ The remaining bands have maps in their first (even) or last (odd) 4 sectors
+ -- if the last, partial, band is odd its map is in its last 4 sectors.
+
+ The bitmap locations are given in a table pointed to by the super block.
+ No doubt they aren't constrained to be at 18, 7ffc, 8000, ...; that is
+ just where they usually are.
+
+ The "directory band" is a bunch of sectors preallocated for dnodes.
+ It has a 4-sector free space bitmap of its own. Each bit in the map
+ corresponds to one 4-sector dnode, bit 0 of the map corresponding to
+ the first 4 sectors of the directory band. The entire band is marked
+ allocated in the main bitmap. The super block gives the locations
+ of the directory band and its bitmap. ("band" doesn't mean it is
+ 8 meg long; it isn't.) */
+
+
+/* dnode: directory. 4 sectors long */
+
+/* A directory is a tree of dnodes. The fnode for a directory
+ contains one pointer, to the root dnode of the tree. The fnode
+ never moves, the dnodes do the B-tree thing, splitting and merging
+ as files are added and removed. */
+
+#define DNODE_MAGIC 0x77e40aae
+
+struct dnode {
+ __le32 magic; /* 77e4 0aae */
+ __le32 first_free; /* offset from start of dnode to
+ first free dir entry */
+#ifdef __LITTLE_ENDIAN
+ u8 root_dnode: 1; /* Is it root dnode? */
+ u8 increment_me: 7; /* some kind of activity counter? */
+ /* Neither HPFS.IFS nor CHKDSK cares
+ if you change this word */
+#else
+ u8 increment_me: 7; /* some kind of activity counter? */
+ /* Neither HPFS.IFS nor CHKDSK cares
+ if you change this word */
+ u8 root_dnode: 1; /* Is it root dnode? */
+#endif
+ u8 increment_me2[3];
+ __le32 up; /* (root dnode) directory's fnode
+ (nonroot) parent dnode */
+ __le32 self; /* pointer to this dnode */
+ u8 dirent[2028]; /* one or more dirents */
+};
+
+struct hpfs_dirent {
+ __le16 length; /* offset to next dirent */
+
+#ifdef __LITTLE_ENDIAN
+ u8 first: 1; /* set on phony ^A^A (".") entry */
+ u8 has_acl: 1;
+ u8 down: 1; /* down pointer present (after name) */
+ u8 last: 1; /* set on phony \377 entry */
+ u8 has_ea: 1; /* entry has EA */
+ u8 has_xtd_perm: 1; /* has extended perm list (???) */
+ u8 has_explicit_acl: 1;
+ u8 has_needea: 1; /* ?? some EA has NEEDEA set
+ I have no idea why this is
+ interesting in a dir entry */
+#else
+ u8 has_needea: 1; /* ?? some EA has NEEDEA set
+ I have no idea why this is
+ interesting in a dir entry */
+ u8 has_explicit_acl: 1;
+ u8 has_xtd_perm: 1; /* has extended perm list (???) */
+ u8 has_ea: 1; /* entry has EA */
+ u8 last: 1; /* set on phony \377 entry */
+ u8 down: 1; /* down pointer present (after name) */
+ u8 has_acl: 1;
+ u8 first: 1; /* set on phony ^A^A (".") entry */
+#endif
+
+#ifdef __LITTLE_ENDIAN
+ u8 read_only: 1; /* dos attrib */
+ u8 hidden: 1; /* dos attrib */
+ u8 system: 1; /* dos attrib */
+ u8 flag11: 1; /* would be volume label dos attrib */
+ u8 directory: 1; /* dos attrib */
+ u8 archive: 1; /* dos attrib */
+ u8 not_8x3: 1; /* name is not 8.3 */
+ u8 flag15: 1;
+#else
+ u8 flag15: 1;
+ u8 not_8x3: 1; /* name is not 8.3 */
+ u8 archive: 1; /* dos attrib */
+ u8 directory: 1; /* dos attrib */
+ u8 flag11: 1; /* would be volume label dos attrib */
+ u8 system: 1; /* dos attrib */
+ u8 hidden: 1; /* dos attrib */
+ u8 read_only: 1; /* dos attrib */
+#endif
+
+ __le32 fnode; /* fnode giving allocation info */
+ __le32 write_date; /* mtime */
+ __le32 file_size; /* file length, bytes */
+ __le32 read_date; /* atime */
+ __le32 creation_date; /* ctime */
+ __le32 ea_size; /* total EA length, bytes */
+ u8 no_of_acls; /* number of ACL's (low 3 bits) */
+ u8 ix; /* code page index (of filename), see
+ struct code_page_data */
+ u8 namelen; /* file name length */
+ u8 name[]; /* file name */
+ /* dnode_secno down; btree down pointer, if present,
+ follows name on next word boundary, or maybe it
+ precedes next dirent, which is on a word boundary. */
+};
+
+
+/* B+ tree: allocation info in fnodes and anodes */
+
+/* dnodes point to fnodes which are responsible for listing the sectors
+ assigned to the file. This is done with trees of (length,address)
+ pairs. (Actually triples, of (length, file-address, disk-address)
+ which can represent holes. Find out if HPFS does that.)
+ At any rate, fnodes contain a small tree; if subtrees are needed
+ they occupy essentially a full block in anodes. A leaf-level tree node
+ has 3-word entries giving sector runs, a non-leaf node has 2-word
+ entries giving subtree pointers. A flag in the header says which. */
+
+struct bplus_leaf_node
+{
+ __le32 file_secno; /* first file sector in extent */
+ __le32 length; /* length, sectors */
+ __le32 disk_secno; /* first corresponding disk sector */
+};
+
+struct bplus_internal_node
+{
+ __le32 file_secno; /* subtree maps sectors < this */
+ __le32 down; /* pointer to subtree */
+};
+
+enum {
+ BP_hbff = 1,
+ BP_fnode_parent = 0x20,
+ BP_binary_search = 0x40,
+ BP_internal = 0x80
+};
+struct bplus_header
+{
+ u8 flags; /* bit 0 - high bit of first free entry offset
+ bit 5 - we're pointed to by an fnode,
+ the data btree or some ea or the
+ main ea bootage pointer ea_secno
+ bit 6 - suggest binary search (unused)
+ bit 7 - 1 -> (internal) tree of anodes
+ 0 -> (leaf) list of extents */
+ u8 fill[3];
+ u8 n_free_nodes; /* free nodes in following array */
+ u8 n_used_nodes; /* used nodes in following array */
+ __le16 first_free; /* offset from start of header to
+ first free node in array */
+ union {
+ /* (internal) 2-word entries giving subtree pointers */
+ DECLARE_FLEX_ARRAY(struct bplus_internal_node, internal);
+ /* (external) 3-word entries giving sector runs */
+ DECLARE_FLEX_ARRAY(struct bplus_leaf_node, external);
+ } u;
+};
+
+static inline bool bp_internal(struct bplus_header *bp)
+{
+ return bp->flags & BP_internal;
+}
+
+static inline bool bp_fnode_parent(struct bplus_header *bp)
+{
+ return bp->flags & BP_fnode_parent;
+}
+
+/* fnode: root of allocation b+ tree, and EA's */
+
+/* Every file and every directory has one fnode, pointed to by the directory
+ entry and pointing to the file's sectors or directory's root dnode. EA's
+ are also stored here, and there are said to be ACL's somewhere here too. */
+
+#define FNODE_MAGIC 0xf7e40aae
+
+enum {FNODE_anode = cpu_to_le16(2), FNODE_dir = cpu_to_le16(256)};
+struct fnode
+{
+ __le32 magic; /* f7e4 0aae */
+ __le32 zero1[2]; /* read history */
+ u8 len, name[15]; /* true length, truncated name */
+ __le32 up; /* pointer to file's directory fnode */
+ __le32 acl_size_l;
+ __le32 acl_secno;
+ __le16 acl_size_s;
+ u8 acl_anode;
+ u8 zero2; /* history bit count */
+ __le32 ea_size_l; /* length of disk-resident ea's */
+ __le32 ea_secno; /* first sector of disk-resident ea's*/
+ __le16 ea_size_s; /* length of fnode-resident ea's */
+
+ __le16 flags; /* bit 1 set -> ea_secno is an anode */
+ /* bit 8 set -> directory. first & only extent
+ points to dnode. */
+ struct bplus_header btree; /* b+ tree, 8 extents or 12 subtrees */
+ union {
+ struct bplus_leaf_node external[8];
+ struct bplus_internal_node internal[12];
+ } u;
+
+ __le32 file_size; /* file length, bytes */
+ __le32 n_needea; /* number of EA's with NEEDEA set */
+ u8 user_id[16]; /* unused */
+ __le16 ea_offs; /* offset from start of fnode
+ to first fnode-resident ea */
+ u8 dasd_limit_treshhold;
+ u8 dasd_limit_delta;
+ __le32 dasd_limit;
+ __le32 dasd_usage;
+ u8 ea[316]; /* zero or more EA's, packed together
+ with no alignment padding.
+ (Do not use this name, get here
+ via fnode + ea_offs. I think.) */
+};
+
+static inline bool fnode_in_anode(struct fnode *p)
+{
+ return (p->flags & FNODE_anode) != 0;
+}
+
+static inline bool fnode_is_dir(struct fnode *p)
+{
+ return (p->flags & FNODE_dir) != 0;
+}
+
+
+/* anode: 99.44% pure allocation tree */
+
+#define ANODE_MAGIC 0x37e40aae
+
+struct anode
+{
+ __le32 magic; /* 37e4 0aae */
+ __le32 self; /* pointer to this anode */
+ __le32 up; /* parent anode or fnode */
+
+ struct bplus_header btree; /* b+tree, 40 extents or 60 subtrees */
+ union {
+ struct bplus_leaf_node external[40];
+ struct bplus_internal_node internal[60];
+ } u;
+
+ __le32 fill[3]; /* unused */
+};
+
+
+/* extended attributes.
+
+ A file's EA info is stored as a list of (name,value) pairs. It is
+ usually in the fnode, but (if it's large) it is moved to a single
+ sector run outside the fnode, or to multiple runs with an anode tree
+ that points to them.
+
+ The value of a single EA is stored along with the name, or (if large)
+ it is moved to a single sector run, or multiple runs pointed to by an
+ anode tree, pointed to by the value field of the (name,value) pair.
+
+ Flags in the EA tell whether the value is immediate, in a single sector
+ run, or in multiple runs. Flags in the fnode tell whether the EA list
+ is immediate, in a single run, or in multiple runs. */
+
+enum {EA_indirect = 1, EA_anode = 2, EA_needea = 128 };
+struct extended_attribute
+{
+ u8 flags; /* bit 0 set -> value gives sector number
+ where real value starts */
+ /* bit 1 set -> sector is an anode
+ that points to fragmented value */
+ /* bit 7 set -> required ea */
+ u8 namelen; /* length of name, bytes */
+ u8 valuelen_lo; /* length of value, bytes */
+ u8 valuelen_hi; /* length of value, bytes */
+ u8 name[];
+ /*
+ u8 name[namelen]; ascii attrib name
+ u8 nul; terminating '\0', not counted
+ u8 value[valuelen]; value, arbitrary
+ if this.flags & 1, valuelen is 8 and the value is
+ u32 length; real length of value, bytes
+ secno secno; sector address where it starts
+ if this.anode, the above sector number is the root of an anode tree
+ which points to the value.
+ */
+};
+
+static inline bool ea_indirect(struct extended_attribute *ea)
+{
+ return ea->flags & EA_indirect;
+}
+
+static inline bool ea_in_anode(struct extended_attribute *ea)
+{
+ return ea->flags & EA_anode;
+}
+
+/*
+ Local Variables:
+ comment-column: 40
+ End:
+*/