aboutsummaryrefslogtreecommitdiff
path: root/include/drm/drm_plane.h
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /include/drm/drm_plane.h
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'include/drm/drm_plane.h')
-rw-r--r--include/drm/drm_plane.h949
1 files changed, 949 insertions, 0 deletions
diff --git a/include/drm/drm_plane.h b/include/drm/drm_plane.h
new file mode 100644
index 000000000..447e664e4
--- /dev/null
+++ b/include/drm/drm_plane.h
@@ -0,0 +1,949 @@
+/*
+ * Copyright (c) 2016 Intel Corporation
+ *
+ * Permission to use, copy, modify, distribute, and sell this software and its
+ * documentation for any purpose is hereby granted without fee, provided that
+ * the above copyright notice appear in all copies and that both that copyright
+ * notice and this permission notice appear in supporting documentation, and
+ * that the name of the copyright holders not be used in advertising or
+ * publicity pertaining to distribution of the software without specific,
+ * written prior permission. The copyright holders make no representations
+ * about the suitability of this software for any purpose. It is provided "as
+ * is" without express or implied warranty.
+ *
+ * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
+ * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
+ * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
+ * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
+ * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
+ * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
+ * OF THIS SOFTWARE.
+ */
+
+#ifndef __DRM_PLANE_H__
+#define __DRM_PLANE_H__
+
+#include <linux/list.h>
+#include <linux/ctype.h>
+#include <drm/drm_mode_object.h>
+#include <drm/drm_color_mgmt.h>
+#include <drm/drm_rect.h>
+#include <drm/drm_modeset_lock.h>
+#include <drm/drm_util.h>
+
+struct drm_crtc;
+struct drm_printer;
+struct drm_modeset_acquire_ctx;
+
+enum drm_scaling_filter {
+ DRM_SCALING_FILTER_DEFAULT,
+ DRM_SCALING_FILTER_NEAREST_NEIGHBOR,
+};
+
+/**
+ * struct drm_plane_state - mutable plane state
+ *
+ * Please note that the destination coordinates @crtc_x, @crtc_y, @crtc_h and
+ * @crtc_w and the source coordinates @src_x, @src_y, @src_h and @src_w are the
+ * raw coordinates provided by userspace. Drivers should use
+ * drm_atomic_helper_check_plane_state() and only use the derived rectangles in
+ * @src and @dst to program the hardware.
+ */
+struct drm_plane_state {
+ /** @plane: backpointer to the plane */
+ struct drm_plane *plane;
+
+ /**
+ * @crtc:
+ *
+ * Currently bound CRTC, NULL if disabled. Do not this write directly,
+ * use drm_atomic_set_crtc_for_plane()
+ */
+ struct drm_crtc *crtc;
+
+ /**
+ * @fb:
+ *
+ * Currently bound framebuffer. Do not write this directly, use
+ * drm_atomic_set_fb_for_plane()
+ */
+ struct drm_framebuffer *fb;
+
+ /**
+ * @fence:
+ *
+ * Optional fence to wait for before scanning out @fb. The core atomic
+ * code will set this when userspace is using explicit fencing. Do not
+ * write this field directly for a driver's implicit fence.
+ *
+ * Drivers should store any implicit fence in this from their
+ * &drm_plane_helper_funcs.prepare_fb callback. See drm_gem_plane_helper_prepare_fb()
+ * and drm_gem_simple_display_pipe_prepare_fb() for suitable helpers.
+ */
+ struct dma_fence *fence;
+
+ /**
+ * @crtc_x:
+ *
+ * Left position of visible portion of plane on crtc, signed dest
+ * location allows it to be partially off screen.
+ */
+
+ int32_t crtc_x;
+ /**
+ * @crtc_y:
+ *
+ * Upper position of visible portion of plane on crtc, signed dest
+ * location allows it to be partially off screen.
+ */
+ int32_t crtc_y;
+
+ /** @crtc_w: width of visible portion of plane on crtc */
+ /** @crtc_h: height of visible portion of plane on crtc */
+ uint32_t crtc_w, crtc_h;
+
+ /**
+ * @src_x: left position of visible portion of plane within plane (in
+ * 16.16 fixed point).
+ */
+ uint32_t src_x;
+ /**
+ * @src_y: upper position of visible portion of plane within plane (in
+ * 16.16 fixed point).
+ */
+ uint32_t src_y;
+ /** @src_w: width of visible portion of plane (in 16.16) */
+ /** @src_h: height of visible portion of plane (in 16.16) */
+ uint32_t src_h, src_w;
+
+ /**
+ * @alpha:
+ * Opacity of the plane with 0 as completely transparent and 0xffff as
+ * completely opaque. See drm_plane_create_alpha_property() for more
+ * details.
+ */
+ u16 alpha;
+
+ /**
+ * @pixel_blend_mode:
+ * The alpha blending equation selection, describing how the pixels from
+ * the current plane are composited with the background. Value can be
+ * one of DRM_MODE_BLEND_*
+ */
+ uint16_t pixel_blend_mode;
+
+ /**
+ * @rotation:
+ * Rotation of the plane. See drm_plane_create_rotation_property() for
+ * more details.
+ */
+ unsigned int rotation;
+
+ /**
+ * @zpos:
+ * Priority of the given plane on crtc (optional).
+ *
+ * User-space may set mutable zpos properties so that multiple active
+ * planes on the same CRTC have identical zpos values. This is a
+ * user-space bug, but drivers can solve the conflict by comparing the
+ * plane object IDs; the plane with a higher ID is stacked on top of a
+ * plane with a lower ID.
+ *
+ * See drm_plane_create_zpos_property() and
+ * drm_plane_create_zpos_immutable_property() for more details.
+ */
+ unsigned int zpos;
+
+ /**
+ * @normalized_zpos:
+ * Normalized value of zpos: unique, range from 0 to N-1 where N is the
+ * number of active planes for given crtc. Note that the driver must set
+ * &drm_mode_config.normalize_zpos or call drm_atomic_normalize_zpos() to
+ * update this before it can be trusted.
+ */
+ unsigned int normalized_zpos;
+
+ /**
+ * @color_encoding:
+ *
+ * Color encoding for non RGB formats
+ */
+ enum drm_color_encoding color_encoding;
+
+ /**
+ * @color_range:
+ *
+ * Color range for non RGB formats
+ */
+ enum drm_color_range color_range;
+
+ /**
+ * @fb_damage_clips:
+ *
+ * Blob representing damage (area in plane framebuffer that changed
+ * since last plane update) as an array of &drm_mode_rect in framebuffer
+ * coodinates of the attached framebuffer. Note that unlike plane src,
+ * damage clips are not in 16.16 fixed point.
+ *
+ * See drm_plane_get_damage_clips() and
+ * drm_plane_get_damage_clips_count() for accessing these.
+ */
+ struct drm_property_blob *fb_damage_clips;
+
+ /**
+ * @src:
+ *
+ * source coordinates of the plane (in 16.16).
+ *
+ * When using drm_atomic_helper_check_plane_state(),
+ * the coordinates are clipped, but the driver may choose
+ * to use unclipped coordinates instead when the hardware
+ * performs the clipping automatically.
+ */
+ /**
+ * @dst:
+ *
+ * clipped destination coordinates of the plane.
+ *
+ * When using drm_atomic_helper_check_plane_state(),
+ * the coordinates are clipped, but the driver may choose
+ * to use unclipped coordinates instead when the hardware
+ * performs the clipping automatically.
+ */
+ struct drm_rect src, dst;
+
+ /**
+ * @visible:
+ *
+ * Visibility of the plane. This can be false even if fb!=NULL and
+ * crtc!=NULL, due to clipping.
+ */
+ bool visible;
+
+ /**
+ * @scaling_filter:
+ *
+ * Scaling filter to be applied
+ */
+ enum drm_scaling_filter scaling_filter;
+
+ /**
+ * @commit: Tracks the pending commit to prevent use-after-free conditions,
+ * and for async plane updates.
+ *
+ * May be NULL.
+ */
+ struct drm_crtc_commit *commit;
+
+ /** @state: backpointer to global drm_atomic_state */
+ struct drm_atomic_state *state;
+};
+
+static inline struct drm_rect
+drm_plane_state_src(const struct drm_plane_state *state)
+{
+ struct drm_rect src = {
+ .x1 = state->src_x,
+ .y1 = state->src_y,
+ .x2 = state->src_x + state->src_w,
+ .y2 = state->src_y + state->src_h,
+ };
+ return src;
+}
+
+static inline struct drm_rect
+drm_plane_state_dest(const struct drm_plane_state *state)
+{
+ struct drm_rect dest = {
+ .x1 = state->crtc_x,
+ .y1 = state->crtc_y,
+ .x2 = state->crtc_x + state->crtc_w,
+ .y2 = state->crtc_y + state->crtc_h,
+ };
+ return dest;
+}
+
+/**
+ * struct drm_plane_funcs - driver plane control functions
+ */
+struct drm_plane_funcs {
+ /**
+ * @update_plane:
+ *
+ * This is the legacy entry point to enable and configure the plane for
+ * the given CRTC and framebuffer. It is never called to disable the
+ * plane, i.e. the passed-in crtc and fb paramters are never NULL.
+ *
+ * The source rectangle in frame buffer memory coordinates is given by
+ * the src_x, src_y, src_w and src_h parameters (as 16.16 fixed point
+ * values). Devices that don't support subpixel plane coordinates can
+ * ignore the fractional part.
+ *
+ * The destination rectangle in CRTC coordinates is given by the
+ * crtc_x, crtc_y, crtc_w and crtc_h parameters (as integer values).
+ * Devices scale the source rectangle to the destination rectangle. If
+ * scaling is not supported, and the source rectangle size doesn't match
+ * the destination rectangle size, the driver must return a
+ * -<errorname>EINVAL</errorname> error.
+ *
+ * Drivers implementing atomic modeset should use
+ * drm_atomic_helper_update_plane() to implement this hook.
+ *
+ * RETURNS:
+ *
+ * 0 on success or a negative error code on failure.
+ */
+ int (*update_plane)(struct drm_plane *plane,
+ struct drm_crtc *crtc, struct drm_framebuffer *fb,
+ int crtc_x, int crtc_y,
+ unsigned int crtc_w, unsigned int crtc_h,
+ uint32_t src_x, uint32_t src_y,
+ uint32_t src_w, uint32_t src_h,
+ struct drm_modeset_acquire_ctx *ctx);
+
+ /**
+ * @disable_plane:
+ *
+ * This is the legacy entry point to disable the plane. The DRM core
+ * calls this method in response to a DRM_IOCTL_MODE_SETPLANE IOCTL call
+ * with the frame buffer ID set to 0. Disabled planes must not be
+ * processed by the CRTC.
+ *
+ * Drivers implementing atomic modeset should use
+ * drm_atomic_helper_disable_plane() to implement this hook.
+ *
+ * RETURNS:
+ *
+ * 0 on success or a negative error code on failure.
+ */
+ int (*disable_plane)(struct drm_plane *plane,
+ struct drm_modeset_acquire_ctx *ctx);
+
+ /**
+ * @destroy:
+ *
+ * Clean up plane resources. This is only called at driver unload time
+ * through drm_mode_config_cleanup() since a plane cannot be hotplugged
+ * in DRM.
+ */
+ void (*destroy)(struct drm_plane *plane);
+
+ /**
+ * @reset:
+ *
+ * Reset plane hardware and software state to off. This function isn't
+ * called by the core directly, only through drm_mode_config_reset().
+ * It's not a helper hook only for historical reasons.
+ *
+ * Atomic drivers can use drm_atomic_helper_plane_reset() to reset
+ * atomic state using this hook.
+ */
+ void (*reset)(struct drm_plane *plane);
+
+ /**
+ * @set_property:
+ *
+ * This is the legacy entry point to update a property attached to the
+ * plane.
+ *
+ * This callback is optional if the driver does not support any legacy
+ * driver-private properties. For atomic drivers it is not used because
+ * property handling is done entirely in the DRM core.
+ *
+ * RETURNS:
+ *
+ * 0 on success or a negative error code on failure.
+ */
+ int (*set_property)(struct drm_plane *plane,
+ struct drm_property *property, uint64_t val);
+
+ /**
+ * @atomic_duplicate_state:
+ *
+ * Duplicate the current atomic state for this plane and return it.
+ * The core and helpers guarantee that any atomic state duplicated with
+ * this hook and still owned by the caller (i.e. not transferred to the
+ * driver by calling &drm_mode_config_funcs.atomic_commit) will be
+ * cleaned up by calling the @atomic_destroy_state hook in this
+ * structure.
+ *
+ * This callback is mandatory for atomic drivers.
+ *
+ * Atomic drivers which don't subclass &struct drm_plane_state should use
+ * drm_atomic_helper_plane_duplicate_state(). Drivers that subclass the
+ * state structure to extend it with driver-private state should use
+ * __drm_atomic_helper_plane_duplicate_state() to make sure shared state is
+ * duplicated in a consistent fashion across drivers.
+ *
+ * It is an error to call this hook before &drm_plane.state has been
+ * initialized correctly.
+ *
+ * NOTE:
+ *
+ * If the duplicate state references refcounted resources this hook must
+ * acquire a reference for each of them. The driver must release these
+ * references again in @atomic_destroy_state.
+ *
+ * RETURNS:
+ *
+ * Duplicated atomic state or NULL when the allocation failed.
+ */
+ struct drm_plane_state *(*atomic_duplicate_state)(struct drm_plane *plane);
+
+ /**
+ * @atomic_destroy_state:
+ *
+ * Destroy a state duplicated with @atomic_duplicate_state and release
+ * or unreference all resources it references
+ *
+ * This callback is mandatory for atomic drivers.
+ */
+ void (*atomic_destroy_state)(struct drm_plane *plane,
+ struct drm_plane_state *state);
+
+ /**
+ * @atomic_set_property:
+ *
+ * Decode a driver-private property value and store the decoded value
+ * into the passed-in state structure. Since the atomic core decodes all
+ * standardized properties (even for extensions beyond the core set of
+ * properties which might not be implemented by all drivers) this
+ * requires drivers to subclass the state structure.
+ *
+ * Such driver-private properties should really only be implemented for
+ * truly hardware/vendor specific state. Instead it is preferred to
+ * standardize atomic extension and decode the properties used to expose
+ * such an extension in the core.
+ *
+ * Do not call this function directly, use
+ * drm_atomic_plane_set_property() instead.
+ *
+ * This callback is optional if the driver does not support any
+ * driver-private atomic properties.
+ *
+ * NOTE:
+ *
+ * This function is called in the state assembly phase of atomic
+ * modesets, which can be aborted for any reason (including on
+ * userspace's request to just check whether a configuration would be
+ * possible). Drivers MUST NOT touch any persistent state (hardware or
+ * software) or data structures except the passed in @state parameter.
+ *
+ * Also since userspace controls in which order properties are set this
+ * function must not do any input validation (since the state update is
+ * incomplete and hence likely inconsistent). Instead any such input
+ * validation must be done in the various atomic_check callbacks.
+ *
+ * RETURNS:
+ *
+ * 0 if the property has been found, -EINVAL if the property isn't
+ * implemented by the driver (which shouldn't ever happen, the core only
+ * asks for properties attached to this plane). No other validation is
+ * allowed by the driver. The core already checks that the property
+ * value is within the range (integer, valid enum value, ...) the driver
+ * set when registering the property.
+ */
+ int (*atomic_set_property)(struct drm_plane *plane,
+ struct drm_plane_state *state,
+ struct drm_property *property,
+ uint64_t val);
+
+ /**
+ * @atomic_get_property:
+ *
+ * Reads out the decoded driver-private property. This is used to
+ * implement the GETPLANE IOCTL.
+ *
+ * Do not call this function directly, use
+ * drm_atomic_plane_get_property() instead.
+ *
+ * This callback is optional if the driver does not support any
+ * driver-private atomic properties.
+ *
+ * RETURNS:
+ *
+ * 0 on success, -EINVAL if the property isn't implemented by the
+ * driver (which should never happen, the core only asks for
+ * properties attached to this plane).
+ */
+ int (*atomic_get_property)(struct drm_plane *plane,
+ const struct drm_plane_state *state,
+ struct drm_property *property,
+ uint64_t *val);
+ /**
+ * @late_register:
+ *
+ * This optional hook can be used to register additional userspace
+ * interfaces attached to the plane like debugfs interfaces.
+ * It is called late in the driver load sequence from drm_dev_register().
+ * Everything added from this callback should be unregistered in
+ * the early_unregister callback.
+ *
+ * Returns:
+ *
+ * 0 on success, or a negative error code on failure.
+ */
+ int (*late_register)(struct drm_plane *plane);
+
+ /**
+ * @early_unregister:
+ *
+ * This optional hook should be used to unregister the additional
+ * userspace interfaces attached to the plane from
+ * @late_register. It is called from drm_dev_unregister(),
+ * early in the driver unload sequence to disable userspace access
+ * before data structures are torndown.
+ */
+ void (*early_unregister)(struct drm_plane *plane);
+
+ /**
+ * @atomic_print_state:
+ *
+ * If driver subclasses &struct drm_plane_state, it should implement
+ * this optional hook for printing additional driver specific state.
+ *
+ * Do not call this directly, use drm_atomic_plane_print_state()
+ * instead.
+ */
+ void (*atomic_print_state)(struct drm_printer *p,
+ const struct drm_plane_state *state);
+
+ /**
+ * @format_mod_supported:
+ *
+ * This optional hook is used for the DRM to determine if the given
+ * format/modifier combination is valid for the plane. This allows the
+ * DRM to generate the correct format bitmask (which formats apply to
+ * which modifier), and to validate modifiers at atomic_check time.
+ *
+ * If not present, then any modifier in the plane's modifier
+ * list is allowed with any of the plane's formats.
+ *
+ * Returns:
+ *
+ * True if the given modifier is valid for that format on the plane.
+ * False otherwise.
+ */
+ bool (*format_mod_supported)(struct drm_plane *plane, uint32_t format,
+ uint64_t modifier);
+};
+
+/**
+ * enum drm_plane_type - uapi plane type enumeration
+ *
+ * For historical reasons not all planes are made the same. This enumeration is
+ * used to tell the different types of planes apart to implement the different
+ * uapi semantics for them. For userspace which is universal plane aware and
+ * which is using that atomic IOCTL there's no difference between these planes
+ * (beyong what the driver and hardware can support of course).
+ *
+ * For compatibility with legacy userspace, only overlay planes are made
+ * available to userspace by default. Userspace clients may set the
+ * &DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that they
+ * wish to receive a universal plane list containing all plane types. See also
+ * drm_for_each_legacy_plane().
+ *
+ * In addition to setting each plane's type, drivers need to setup the
+ * &drm_crtc.primary and optionally &drm_crtc.cursor pointers for legacy
+ * IOCTLs. See drm_crtc_init_with_planes().
+ *
+ * WARNING: The values of this enum is UABI since they're exposed in the "type"
+ * property.
+ */
+enum drm_plane_type {
+ /**
+ * @DRM_PLANE_TYPE_OVERLAY:
+ *
+ * Overlay planes represent all non-primary, non-cursor planes. Some
+ * drivers refer to these types of planes as "sprites" internally.
+ */
+ DRM_PLANE_TYPE_OVERLAY,
+
+ /**
+ * @DRM_PLANE_TYPE_PRIMARY:
+ *
+ * A primary plane attached to a CRTC is the most likely to be able to
+ * light up the CRTC when no scaling/cropping is used and the plane
+ * covers the whole CRTC.
+ */
+ DRM_PLANE_TYPE_PRIMARY,
+
+ /**
+ * @DRM_PLANE_TYPE_CURSOR:
+ *
+ * A cursor plane attached to a CRTC is more likely to be able to be
+ * enabled when no scaling/cropping is used and the framebuffer has the
+ * size indicated by &drm_mode_config.cursor_width and
+ * &drm_mode_config.cursor_height. Additionally, if the driver doesn't
+ * support modifiers, the framebuffer should have a linear layout.
+ */
+ DRM_PLANE_TYPE_CURSOR,
+};
+
+
+/**
+ * struct drm_plane - central DRM plane control structure
+ *
+ * Planes represent the scanout hardware of a display block. They receive their
+ * input data from a &drm_framebuffer and feed it to a &drm_crtc. Planes control
+ * the color conversion, see `Plane Composition Properties`_ for more details,
+ * and are also involved in the color conversion of input pixels, see `Color
+ * Management Properties`_ for details on that.
+ */
+struct drm_plane {
+ /** @dev: DRM device this plane belongs to */
+ struct drm_device *dev;
+
+ /**
+ * @head:
+ *
+ * List of all planes on @dev, linked from &drm_mode_config.plane_list.
+ * Invariant over the lifetime of @dev and therefore does not need
+ * locking.
+ */
+ struct list_head head;
+
+ /** @name: human readable name, can be overwritten by the driver */
+ char *name;
+
+ /**
+ * @mutex:
+ *
+ * Protects modeset plane state, together with the &drm_crtc.mutex of
+ * CRTC this plane is linked to (when active, getting activated or
+ * getting disabled).
+ *
+ * For atomic drivers specifically this protects @state.
+ */
+ struct drm_modeset_lock mutex;
+
+ /** @base: base mode object */
+ struct drm_mode_object base;
+
+ /**
+ * @possible_crtcs: pipes this plane can be bound to constructed from
+ * drm_crtc_mask()
+ */
+ uint32_t possible_crtcs;
+ /** @format_types: array of formats supported by this plane */
+ uint32_t *format_types;
+ /** @format_count: Size of the array pointed at by @format_types. */
+ unsigned int format_count;
+ /**
+ * @format_default: driver hasn't supplied supported formats for the
+ * plane. Used by the non-atomic driver compatibility wrapper only.
+ */
+ bool format_default;
+
+ /** @modifiers: array of modifiers supported by this plane */
+ uint64_t *modifiers;
+ /** @modifier_count: Size of the array pointed at by @modifier_count. */
+ unsigned int modifier_count;
+
+ /**
+ * @crtc:
+ *
+ * Currently bound CRTC, only meaningful for non-atomic drivers. For
+ * atomic drivers this is forced to be NULL, atomic drivers should
+ * instead check &drm_plane_state.crtc.
+ */
+ struct drm_crtc *crtc;
+
+ /**
+ * @fb:
+ *
+ * Currently bound framebuffer, only meaningful for non-atomic drivers.
+ * For atomic drivers this is forced to be NULL, atomic drivers should
+ * instead check &drm_plane_state.fb.
+ */
+ struct drm_framebuffer *fb;
+
+ /**
+ * @old_fb:
+ *
+ * Temporary tracking of the old fb while a modeset is ongoing. Only
+ * used by non-atomic drivers, forced to be NULL for atomic drivers.
+ */
+ struct drm_framebuffer *old_fb;
+
+ /** @funcs: plane control functions */
+ const struct drm_plane_funcs *funcs;
+
+ /** @properties: property tracking for this plane */
+ struct drm_object_properties properties;
+
+ /** @type: Type of plane, see &enum drm_plane_type for details. */
+ enum drm_plane_type type;
+
+ /**
+ * @index: Position inside the mode_config.list, can be used as an array
+ * index. It is invariant over the lifetime of the plane.
+ */
+ unsigned index;
+
+ /** @helper_private: mid-layer private data */
+ const struct drm_plane_helper_funcs *helper_private;
+
+ /**
+ * @state:
+ *
+ * Current atomic state for this plane.
+ *
+ * This is protected by @mutex. Note that nonblocking atomic commits
+ * access the current plane state without taking locks. Either by going
+ * through the &struct drm_atomic_state pointers, see
+ * for_each_oldnew_plane_in_state(), for_each_old_plane_in_state() and
+ * for_each_new_plane_in_state(). Or through careful ordering of atomic
+ * commit operations as implemented in the atomic helpers, see
+ * &struct drm_crtc_commit.
+ */
+ struct drm_plane_state *state;
+
+ /**
+ * @alpha_property:
+ * Optional alpha property for this plane. See
+ * drm_plane_create_alpha_property().
+ */
+ struct drm_property *alpha_property;
+ /**
+ * @zpos_property:
+ * Optional zpos property for this plane. See
+ * drm_plane_create_zpos_property().
+ */
+ struct drm_property *zpos_property;
+ /**
+ * @rotation_property:
+ * Optional rotation property for this plane. See
+ * drm_plane_create_rotation_property().
+ */
+ struct drm_property *rotation_property;
+ /**
+ * @blend_mode_property:
+ * Optional "pixel blend mode" enum property for this plane.
+ * Blend mode property represents the alpha blending equation selection,
+ * describing how the pixels from the current plane are composited with
+ * the background.
+ */
+ struct drm_property *blend_mode_property;
+
+ /**
+ * @color_encoding_property:
+ *
+ * Optional "COLOR_ENCODING" enum property for specifying
+ * color encoding for non RGB formats.
+ * See drm_plane_create_color_properties().
+ */
+ struct drm_property *color_encoding_property;
+ /**
+ * @color_range_property:
+ *
+ * Optional "COLOR_RANGE" enum property for specifying
+ * color range for non RGB formats.
+ * See drm_plane_create_color_properties().
+ */
+ struct drm_property *color_range_property;
+
+ /**
+ * @scaling_filter_property: property to apply a particular filter while
+ * scaling.
+ */
+ struct drm_property *scaling_filter_property;
+};
+
+#define obj_to_plane(x) container_of(x, struct drm_plane, base)
+
+__printf(9, 10)
+int drm_universal_plane_init(struct drm_device *dev,
+ struct drm_plane *plane,
+ uint32_t possible_crtcs,
+ const struct drm_plane_funcs *funcs,
+ const uint32_t *formats,
+ unsigned int format_count,
+ const uint64_t *format_modifiers,
+ enum drm_plane_type type,
+ const char *name, ...);
+void drm_plane_cleanup(struct drm_plane *plane);
+
+__printf(10, 11)
+void *__drmm_universal_plane_alloc(struct drm_device *dev,
+ size_t size, size_t offset,
+ uint32_t possible_crtcs,
+ const struct drm_plane_funcs *funcs,
+ const uint32_t *formats,
+ unsigned int format_count,
+ const uint64_t *format_modifiers,
+ enum drm_plane_type plane_type,
+ const char *name, ...);
+
+/**
+ * drmm_universal_plane_alloc - Allocate and initialize an universal plane object
+ * @dev: DRM device
+ * @type: the type of the struct which contains struct &drm_plane
+ * @member: the name of the &drm_plane within @type
+ * @possible_crtcs: bitmask of possible CRTCs
+ * @funcs: callbacks for the new plane
+ * @formats: array of supported formats (DRM_FORMAT\_\*)
+ * @format_count: number of elements in @formats
+ * @format_modifiers: array of struct drm_format modifiers terminated by
+ * DRM_FORMAT_MOD_INVALID
+ * @plane_type: type of plane (overlay, primary, cursor)
+ * @name: printf style format string for the plane name, or NULL for default name
+ *
+ * Allocates and initializes a plane object of type @type. Cleanup is
+ * automatically handled through registering drm_plane_cleanup() with
+ * drmm_add_action().
+ *
+ * The @drm_plane_funcs.destroy hook must be NULL.
+ *
+ * Drivers that only support the DRM_FORMAT_MOD_LINEAR modifier support may set
+ * @format_modifiers to NULL. The plane will advertise the linear modifier.
+ *
+ * Returns:
+ * Pointer to new plane, or ERR_PTR on failure.
+ */
+#define drmm_universal_plane_alloc(dev, type, member, possible_crtcs, funcs, formats, \
+ format_count, format_modifiers, plane_type, name, ...) \
+ ((type *)__drmm_universal_plane_alloc(dev, sizeof(type), \
+ offsetof(type, member), \
+ possible_crtcs, funcs, formats, \
+ format_count, format_modifiers, \
+ plane_type, name, ##__VA_ARGS__))
+
+__printf(10, 11)
+void *__drm_universal_plane_alloc(struct drm_device *dev,
+ size_t size, size_t offset,
+ uint32_t possible_crtcs,
+ const struct drm_plane_funcs *funcs,
+ const uint32_t *formats,
+ unsigned int format_count,
+ const uint64_t *format_modifiers,
+ enum drm_plane_type plane_type,
+ const char *name, ...);
+
+/**
+ * drm_universal_plane_alloc() - Allocate and initialize an universal plane object
+ * @dev: DRM device
+ * @type: the type of the struct which contains struct &drm_plane
+ * @member: the name of the &drm_plane within @type
+ * @possible_crtcs: bitmask of possible CRTCs
+ * @funcs: callbacks for the new plane
+ * @formats: array of supported formats (DRM_FORMAT\_\*)
+ * @format_count: number of elements in @formats
+ * @format_modifiers: array of struct drm_format modifiers terminated by
+ * DRM_FORMAT_MOD_INVALID
+ * @plane_type: type of plane (overlay, primary, cursor)
+ * @name: printf style format string for the plane name, or NULL for default name
+ *
+ * Allocates and initializes a plane object of type @type. The caller
+ * is responsible for releasing the allocated memory with kfree().
+ *
+ * Drivers are encouraged to use drmm_universal_plane_alloc() instead.
+ *
+ * Drivers that only support the DRM_FORMAT_MOD_LINEAR modifier support may set
+ * @format_modifiers to NULL. The plane will advertise the linear modifier.
+ *
+ * Returns:
+ * Pointer to new plane, or ERR_PTR on failure.
+ */
+#define drm_universal_plane_alloc(dev, type, member, possible_crtcs, funcs, formats, \
+ format_count, format_modifiers, plane_type, name, ...) \
+ ((type *)__drm_universal_plane_alloc(dev, sizeof(type), \
+ offsetof(type, member), \
+ possible_crtcs, funcs, formats, \
+ format_count, format_modifiers, \
+ plane_type, name, ##__VA_ARGS__))
+
+/**
+ * drm_plane_index - find the index of a registered plane
+ * @plane: plane to find index for
+ *
+ * Given a registered plane, return the index of that plane within a DRM
+ * device's list of planes.
+ */
+static inline unsigned int drm_plane_index(const struct drm_plane *plane)
+{
+ return plane->index;
+}
+
+/**
+ * drm_plane_mask - find the mask of a registered plane
+ * @plane: plane to find mask for
+ */
+static inline u32 drm_plane_mask(const struct drm_plane *plane)
+{
+ return 1 << drm_plane_index(plane);
+}
+
+struct drm_plane * drm_plane_from_index(struct drm_device *dev, int idx);
+void drm_plane_force_disable(struct drm_plane *plane);
+
+int drm_mode_plane_set_obj_prop(struct drm_plane *plane,
+ struct drm_property *property,
+ uint64_t value);
+
+/**
+ * drm_plane_find - find a &drm_plane
+ * @dev: DRM device
+ * @file_priv: drm file to check for lease against.
+ * @id: plane id
+ *
+ * Returns the plane with @id, NULL if it doesn't exist. Simple wrapper around
+ * drm_mode_object_find().
+ */
+static inline struct drm_plane *drm_plane_find(struct drm_device *dev,
+ struct drm_file *file_priv,
+ uint32_t id)
+{
+ struct drm_mode_object *mo;
+ mo = drm_mode_object_find(dev, file_priv, id, DRM_MODE_OBJECT_PLANE);
+ return mo ? obj_to_plane(mo) : NULL;
+}
+
+/**
+ * drm_for_each_plane_mask - iterate over planes specified by bitmask
+ * @plane: the loop cursor
+ * @dev: the DRM device
+ * @plane_mask: bitmask of plane indices
+ *
+ * Iterate over all planes specified by bitmask.
+ */
+#define drm_for_each_plane_mask(plane, dev, plane_mask) \
+ list_for_each_entry((plane), &(dev)->mode_config.plane_list, head) \
+ for_each_if ((plane_mask) & drm_plane_mask(plane))
+
+/**
+ * drm_for_each_legacy_plane - iterate over all planes for legacy userspace
+ * @plane: the loop cursor
+ * @dev: the DRM device
+ *
+ * Iterate over all legacy planes of @dev, excluding primary and cursor planes.
+ * This is useful for implementing userspace apis when userspace is not
+ * universal plane aware. See also &enum drm_plane_type.
+ */
+#define drm_for_each_legacy_plane(plane, dev) \
+ list_for_each_entry(plane, &(dev)->mode_config.plane_list, head) \
+ for_each_if (plane->type == DRM_PLANE_TYPE_OVERLAY)
+
+/**
+ * drm_for_each_plane - iterate over all planes
+ * @plane: the loop cursor
+ * @dev: the DRM device
+ *
+ * Iterate over all planes of @dev, include primary and cursor planes.
+ */
+#define drm_for_each_plane(plane, dev) \
+ list_for_each_entry(plane, &(dev)->mode_config.plane_list, head)
+
+bool drm_any_plane_has_format(struct drm_device *dev,
+ u32 format, u64 modifier);
+
+void drm_plane_enable_fb_damage_clips(struct drm_plane *plane);
+unsigned int
+drm_plane_get_damage_clips_count(const struct drm_plane_state *state);
+struct drm_mode_rect *
+drm_plane_get_damage_clips(const struct drm_plane_state *state);
+
+int drm_plane_create_scaling_filter_property(struct drm_plane *plane,
+ unsigned int supported_filters);
+
+#endif