diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /include/math-emu/op-4.h | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'include/math-emu/op-4.h')
-rw-r--r-- | include/math-emu/op-4.h | 692 |
1 files changed, 692 insertions, 0 deletions
diff --git a/include/math-emu/op-4.h b/include/math-emu/op-4.h new file mode 100644 index 000000000..ba226f823 --- /dev/null +++ b/include/math-emu/op-4.h @@ -0,0 +1,692 @@ +/* Software floating-point emulation. + Basic four-word fraction declaration and manipulation. + Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. + This file is part of the GNU C Library. + Contributed by Richard Henderson (rth@cygnus.com), + Jakub Jelinek (jj@ultra.linux.cz), + David S. Miller (davem@redhat.com) and + Peter Maydell (pmaydell@chiark.greenend.org.uk). + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. + + You should have received a copy of the GNU Library General Public + License along with the GNU C Library; see the file COPYING.LIB. If + not, write to the Free Software Foundation, Inc., + 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +#ifndef __MATH_EMU_OP_4_H__ +#define __MATH_EMU_OP_4_H__ + +#define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4] +#define _FP_FRAC_COPY_4(D,S) \ + (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \ + D##_f[2] = S##_f[2], D##_f[3] = S##_f[3]) +#define _FP_FRAC_SET_4(X,I) __FP_FRAC_SET_4(X, I) +#define _FP_FRAC_HIGH_4(X) (X##_f[3]) +#define _FP_FRAC_LOW_4(X) (X##_f[0]) +#define _FP_FRAC_WORD_4(X,w) (X##_f[w]) + +#define _FP_FRAC_SLL_4(X,N) \ + do { \ + _FP_I_TYPE _up, _down, _skip, _i; \ + _skip = (N) / _FP_W_TYPE_SIZE; \ + _up = (N) % _FP_W_TYPE_SIZE; \ + _down = _FP_W_TYPE_SIZE - _up; \ + if (!_up) \ + for (_i = 3; _i >= _skip; --_i) \ + X##_f[_i] = X##_f[_i-_skip]; \ + else \ + { \ + for (_i = 3; _i > _skip; --_i) \ + X##_f[_i] = X##_f[_i-_skip] << _up \ + | X##_f[_i-_skip-1] >> _down; \ + X##_f[_i--] = X##_f[0] << _up; \ + } \ + for (; _i >= 0; --_i) \ + X##_f[_i] = 0; \ + } while (0) + +/* This one was broken too */ +#define _FP_FRAC_SRL_4(X,N) \ + do { \ + _FP_I_TYPE _up, _down, _skip, _i; \ + _skip = (N) / _FP_W_TYPE_SIZE; \ + _down = (N) % _FP_W_TYPE_SIZE; \ + _up = _FP_W_TYPE_SIZE - _down; \ + if (!_down) \ + for (_i = 0; _i <= 3-_skip; ++_i) \ + X##_f[_i] = X##_f[_i+_skip]; \ + else \ + { \ + for (_i = 0; _i < 3-_skip; ++_i) \ + X##_f[_i] = X##_f[_i+_skip] >> _down \ + | X##_f[_i+_skip+1] << _up; \ + X##_f[_i++] = X##_f[3] >> _down; \ + } \ + for (; _i < 4; ++_i) \ + X##_f[_i] = 0; \ + } while (0) + + +/* Right shift with sticky-lsb. + * What this actually means is that we do a standard right-shift, + * but that if any of the bits that fall off the right hand side + * were one then we always set the LSbit. + */ +#define _FP_FRAC_SRS_4(X,N,size) \ + do { \ + _FP_I_TYPE _up, _down, _skip, _i; \ + _FP_W_TYPE _s; \ + _skip = (N) / _FP_W_TYPE_SIZE; \ + _down = (N) % _FP_W_TYPE_SIZE; \ + _up = _FP_W_TYPE_SIZE - _down; \ + for (_s = _i = 0; _i < _skip; ++_i) \ + _s |= X##_f[_i]; \ + _s |= X##_f[_i] << _up; \ +/* s is now != 0 if we want to set the LSbit */ \ + if (!_down) \ + for (_i = 0; _i <= 3-_skip; ++_i) \ + X##_f[_i] = X##_f[_i+_skip]; \ + else \ + { \ + for (_i = 0; _i < 3-_skip; ++_i) \ + X##_f[_i] = X##_f[_i+_skip] >> _down \ + | X##_f[_i+_skip+1] << _up; \ + X##_f[_i++] = X##_f[3] >> _down; \ + } \ + for (; _i < 4; ++_i) \ + X##_f[_i] = 0; \ + /* don't fix the LSB until the very end when we're sure f[0] is stable */ \ + X##_f[0] |= (_s != 0); \ + } while (0) + +#define _FP_FRAC_ADD_4(R,X,Y) \ + __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \ + X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ + Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) + +#define _FP_FRAC_SUB_4(R,X,Y) \ + __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \ + X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ + Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) + +#define _FP_FRAC_DEC_4(X,Y) \ + __FP_FRAC_DEC_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ + Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) + +#define _FP_FRAC_ADDI_4(X,I) \ + __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I) + +#define _FP_ZEROFRAC_4 0,0,0,0 +#define _FP_MINFRAC_4 0,0,0,1 +#define _FP_MAXFRAC_4 (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0) + +#define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0) +#define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE)X##_f[3] < 0) +#define _FP_FRAC_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs) +#define _FP_FRAC_CLEAR_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs) + +#define _FP_FRAC_EQ_4(X,Y) \ + (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \ + && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3]) + +#define _FP_FRAC_GT_4(X,Y) \ + (X##_f[3] > Y##_f[3] || \ + (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \ + (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \ + (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0]) \ + )) \ + )) \ + ) + +#define _FP_FRAC_GE_4(X,Y) \ + (X##_f[3] > Y##_f[3] || \ + (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \ + (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \ + (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0]) \ + )) \ + )) \ + ) + + +#define _FP_FRAC_CLZ_4(R,X) \ + do { \ + if (X##_f[3]) \ + { \ + __FP_CLZ(R,X##_f[3]); \ + } \ + else if (X##_f[2]) \ + { \ + __FP_CLZ(R,X##_f[2]); \ + R += _FP_W_TYPE_SIZE; \ + } \ + else if (X##_f[1]) \ + { \ + __FP_CLZ(R,X##_f[2]); \ + R += _FP_W_TYPE_SIZE*2; \ + } \ + else \ + { \ + __FP_CLZ(R,X##_f[0]); \ + R += _FP_W_TYPE_SIZE*3; \ + } \ + } while(0) + + +#define _FP_UNPACK_RAW_4(fs, X, val) \ + do { \ + union _FP_UNION_##fs _flo; _flo.flt = (val); \ + X##_f[0] = _flo.bits.frac0; \ + X##_f[1] = _flo.bits.frac1; \ + X##_f[2] = _flo.bits.frac2; \ + X##_f[3] = _flo.bits.frac3; \ + X##_e = _flo.bits.exp; \ + X##_s = _flo.bits.sign; \ + } while (0) + +#define _FP_UNPACK_RAW_4_P(fs, X, val) \ + do { \ + union _FP_UNION_##fs *_flo = \ + (union _FP_UNION_##fs *)(val); \ + \ + X##_f[0] = _flo->bits.frac0; \ + X##_f[1] = _flo->bits.frac1; \ + X##_f[2] = _flo->bits.frac2; \ + X##_f[3] = _flo->bits.frac3; \ + X##_e = _flo->bits.exp; \ + X##_s = _flo->bits.sign; \ + } while (0) + +#define _FP_PACK_RAW_4(fs, val, X) \ + do { \ + union _FP_UNION_##fs _flo; \ + _flo.bits.frac0 = X##_f[0]; \ + _flo.bits.frac1 = X##_f[1]; \ + _flo.bits.frac2 = X##_f[2]; \ + _flo.bits.frac3 = X##_f[3]; \ + _flo.bits.exp = X##_e; \ + _flo.bits.sign = X##_s; \ + (val) = _flo.flt; \ + } while (0) + +#define _FP_PACK_RAW_4_P(fs, val, X) \ + do { \ + union _FP_UNION_##fs *_flo = \ + (union _FP_UNION_##fs *)(val); \ + \ + _flo->bits.frac0 = X##_f[0]; \ + _flo->bits.frac1 = X##_f[1]; \ + _flo->bits.frac2 = X##_f[2]; \ + _flo->bits.frac3 = X##_f[3]; \ + _flo->bits.exp = X##_e; \ + _flo->bits.sign = X##_s; \ + } while (0) + +/* + * Multiplication algorithms: + */ + +/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ + +#define _FP_MUL_MEAT_4_wide(wfracbits, R, X, Y, doit) \ + do { \ + _FP_FRAC_DECL_8(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \ + _FP_FRAC_DECL_2(_d); _FP_FRAC_DECL_2(_e); _FP_FRAC_DECL_2(_f); \ + \ + doit(_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0), X##_f[0], Y##_f[0]); \ + doit(_b_f1, _b_f0, X##_f[0], Y##_f[1]); \ + doit(_c_f1, _c_f0, X##_f[1], Y##_f[0]); \ + doit(_d_f1, _d_f0, X##_f[1], Y##_f[1]); \ + doit(_e_f1, _e_f0, X##_f[0], Y##_f[2]); \ + doit(_f_f1, _f_f0, X##_f[2], Y##_f[0]); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \ + _FP_FRAC_WORD_8(_z,1), 0,_b_f1,_b_f0, \ + 0,0,_FP_FRAC_WORD_8(_z,1)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \ + _FP_FRAC_WORD_8(_z,1), 0,_c_f1,_c_f0, \ + _FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \ + _FP_FRAC_WORD_8(_z,1)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ + _FP_FRAC_WORD_8(_z,2), 0,_d_f1,_d_f0, \ + 0,_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ + _FP_FRAC_WORD_8(_z,2), 0,_e_f1,_e_f0, \ + _FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ + _FP_FRAC_WORD_8(_z,2)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ + _FP_FRAC_WORD_8(_z,2), 0,_f_f1,_f_f0, \ + _FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ + _FP_FRAC_WORD_8(_z,2)); \ + doit(_b_f1, _b_f0, X##_f[0], Y##_f[3]); \ + doit(_c_f1, _c_f0, X##_f[3], Y##_f[0]); \ + doit(_d_f1, _d_f0, X##_f[1], Y##_f[2]); \ + doit(_e_f1, _e_f0, X##_f[2], Y##_f[1]); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3), 0,_b_f1,_b_f0, \ + 0,_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3), 0,_c_f1,_c_f0, \ + _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3), 0,_d_f1,_d_f0, \ + _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3), 0,_e_f1,_e_f0, \ + _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3)); \ + doit(_b_f1, _b_f0, X##_f[2], Y##_f[2]); \ + doit(_c_f1, _c_f0, X##_f[1], Y##_f[3]); \ + doit(_d_f1, _d_f0, X##_f[3], Y##_f[1]); \ + doit(_e_f1, _e_f0, X##_f[2], Y##_f[3]); \ + doit(_f_f1, _f_f0, X##_f[3], Y##_f[2]); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ + _FP_FRAC_WORD_8(_z,4), 0,_b_f1,_b_f0, \ + 0,_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ + _FP_FRAC_WORD_8(_z,4), 0,_c_f1,_c_f0, \ + _FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ + _FP_FRAC_WORD_8(_z,4)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ + _FP_FRAC_WORD_8(_z,4), 0,_d_f1,_d_f0, \ + _FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ + _FP_FRAC_WORD_8(_z,4)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ + _FP_FRAC_WORD_8(_z,5), 0,_e_f1,_e_f0, \ + 0,_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ + _FP_FRAC_WORD_8(_z,5), 0,_f_f1,_f_f0, \ + _FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ + _FP_FRAC_WORD_8(_z,5)); \ + doit(_b_f1, _b_f0, X##_f[3], Y##_f[3]); \ + __FP_FRAC_ADD_2(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ + _b_f1,_b_f0, \ + _FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6)); \ + \ + /* Normalize since we know where the msb of the multiplicands \ + were (bit B), we know that the msb of the of the product is \ + at either 2B or 2B-1. */ \ + _FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \ + __FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \ + _FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \ + } while (0) + +#define _FP_MUL_MEAT_4_gmp(wfracbits, R, X, Y) \ + do { \ + _FP_FRAC_DECL_8(_z); \ + \ + mpn_mul_n(_z_f, _x_f, _y_f, 4); \ + \ + /* Normalize since we know where the msb of the multiplicands \ + were (bit B), we know that the msb of the of the product is \ + at either 2B or 2B-1. */ \ + _FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \ + __FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \ + _FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \ + } while (0) + +/* + * Helper utility for _FP_DIV_MEAT_4_udiv: + * pppp = m * nnn + */ +#define umul_ppppmnnn(p3,p2,p1,p0,m,n2,n1,n0) \ + do { \ + UWtype _t; \ + umul_ppmm(p1,p0,m,n0); \ + umul_ppmm(p2,_t,m,n1); \ + __FP_FRAC_ADDI_2(p2,p1,_t); \ + umul_ppmm(p3,_t,m,n2); \ + __FP_FRAC_ADDI_2(p3,p2,_t); \ + } while (0) + +/* + * Division algorithms: + */ + +#define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \ + do { \ + int _i; \ + _FP_FRAC_DECL_4(_n); _FP_FRAC_DECL_4(_m); \ + _FP_FRAC_SET_4(_n, _FP_ZEROFRAC_4); \ + if (_FP_FRAC_GT_4(X, Y)) \ + { \ + _n_f[3] = X##_f[0] << (_FP_W_TYPE_SIZE - 1); \ + _FP_FRAC_SRL_4(X, 1); \ + } \ + else \ + R##_e--; \ + \ + /* Normalize, i.e. make the most significant bit of the \ + denominator set. */ \ + _FP_FRAC_SLL_4(Y, _FP_WFRACXBITS_##fs); \ + \ + for (_i = 3; ; _i--) \ + { \ + if (X##_f[3] == Y##_f[3]) \ + { \ + /* This is a special case, not an optimization \ + (X##_f[3]/Y##_f[3] would not fit into UWtype). \ + As X## is guaranteed to be < Y, R##_f[_i] can be either \ + (UWtype)-1 or (UWtype)-2. */ \ + R##_f[_i] = -1; \ + if (!_i) \ + break; \ + __FP_FRAC_SUB_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ + Y##_f[2], Y##_f[1], Y##_f[0], 0, \ + X##_f[2], X##_f[1], X##_f[0], _n_f[_i]); \ + _FP_FRAC_SUB_4(X, Y, X); \ + if (X##_f[3] > Y##_f[3]) \ + { \ + R##_f[_i] = -2; \ + _FP_FRAC_ADD_4(X, Y, X); \ + } \ + } \ + else \ + { \ + udiv_qrnnd(R##_f[_i], X##_f[3], X##_f[3], X##_f[2], Y##_f[3]); \ + umul_ppppmnnn(_m_f[3], _m_f[2], _m_f[1], _m_f[0], \ + R##_f[_i], Y##_f[2], Y##_f[1], Y##_f[0]); \ + X##_f[2] = X##_f[1]; \ + X##_f[1] = X##_f[0]; \ + X##_f[0] = _n_f[_i]; \ + if (_FP_FRAC_GT_4(_m, X)) \ + { \ + R##_f[_i]--; \ + _FP_FRAC_ADD_4(X, Y, X); \ + if (_FP_FRAC_GE_4(X, Y) && _FP_FRAC_GT_4(_m, X)) \ + { \ + R##_f[_i]--; \ + _FP_FRAC_ADD_4(X, Y, X); \ + } \ + } \ + _FP_FRAC_DEC_4(X, _m); \ + if (!_i) \ + { \ + if (!_FP_FRAC_EQ_4(X, _m)) \ + R##_f[0] |= _FP_WORK_STICKY; \ + break; \ + } \ + } \ + } \ + } while (0) + + +/* + * Square root algorithms: + * We have just one right now, maybe Newton approximation + * should be added for those machines where division is fast. + */ + +#define _FP_SQRT_MEAT_4(R, S, T, X, q) \ + do { \ + while (q) \ + { \ + T##_f[3] = S##_f[3] + q; \ + if (T##_f[3] <= X##_f[3]) \ + { \ + S##_f[3] = T##_f[3] + q; \ + X##_f[3] -= T##_f[3]; \ + R##_f[3] += q; \ + } \ + _FP_FRAC_SLL_4(X, 1); \ + q >>= 1; \ + } \ + q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ + while (q) \ + { \ + T##_f[2] = S##_f[2] + q; \ + T##_f[3] = S##_f[3]; \ + if (T##_f[3] < X##_f[3] || \ + (T##_f[3] == X##_f[3] && T##_f[2] <= X##_f[2])) \ + { \ + S##_f[2] = T##_f[2] + q; \ + S##_f[3] += (T##_f[2] > S##_f[2]); \ + __FP_FRAC_DEC_2(X##_f[3], X##_f[2], \ + T##_f[3], T##_f[2]); \ + R##_f[2] += q; \ + } \ + _FP_FRAC_SLL_4(X, 1); \ + q >>= 1; \ + } \ + q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ + while (q) \ + { \ + T##_f[1] = S##_f[1] + q; \ + T##_f[2] = S##_f[2]; \ + T##_f[3] = S##_f[3]; \ + if (T##_f[3] < X##_f[3] || \ + (T##_f[3] == X##_f[3] && (T##_f[2] < X##_f[2] || \ + (T##_f[2] == X##_f[2] && T##_f[1] <= X##_f[1])))) \ + { \ + S##_f[1] = T##_f[1] + q; \ + S##_f[2] += (T##_f[1] > S##_f[1]); \ + S##_f[3] += (T##_f[2] > S##_f[2]); \ + __FP_FRAC_DEC_3(X##_f[3], X##_f[2], X##_f[1], \ + T##_f[3], T##_f[2], T##_f[1]); \ + R##_f[1] += q; \ + } \ + _FP_FRAC_SLL_4(X, 1); \ + q >>= 1; \ + } \ + q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ + while (q != _FP_WORK_ROUND) \ + { \ + T##_f[0] = S##_f[0] + q; \ + T##_f[1] = S##_f[1]; \ + T##_f[2] = S##_f[2]; \ + T##_f[3] = S##_f[3]; \ + if (_FP_FRAC_GE_4(X,T)) \ + { \ + S##_f[0] = T##_f[0] + q; \ + S##_f[1] += (T##_f[0] > S##_f[0]); \ + S##_f[2] += (T##_f[1] > S##_f[1]); \ + S##_f[3] += (T##_f[2] > S##_f[2]); \ + _FP_FRAC_DEC_4(X, T); \ + R##_f[0] += q; \ + } \ + _FP_FRAC_SLL_4(X, 1); \ + q >>= 1; \ + } \ + if (!_FP_FRAC_ZEROP_4(X)) \ + { \ + if (_FP_FRAC_GT_4(X,S)) \ + R##_f[0] |= _FP_WORK_ROUND; \ + R##_f[0] |= _FP_WORK_STICKY; \ + } \ + } while (0) + + +/* + * Internals + */ + +#define __FP_FRAC_SET_4(X,I3,I2,I1,I0) \ + (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0) + +#ifndef __FP_FRAC_ADD_3 +#define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \ + do { \ + int _c1, _c2; \ + r0 = x0 + y0; \ + _c1 = r0 < x0; \ + r1 = x1 + y1; \ + _c2 = r1 < x1; \ + r1 += _c1; \ + _c2 |= r1 < _c1; \ + r2 = x2 + y2 + _c2; \ + } while (0) +#endif + +#ifndef __FP_FRAC_ADD_4 +#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ + do { \ + int _c1, _c2, _c3; \ + r0 = x0 + y0; \ + _c1 = r0 < x0; \ + r1 = x1 + y1; \ + _c2 = r1 < x1; \ + r1 += _c1; \ + _c2 |= r1 < _c1; \ + r2 = x2 + y2; \ + _c3 = r2 < x2; \ + r2 += _c2; \ + _c3 |= r2 < _c2; \ + r3 = x3 + y3 + _c3; \ + } while (0) +#endif + +#ifndef __FP_FRAC_SUB_3 +#define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \ + do { \ + int _c1, _c2; \ + r0 = x0 - y0; \ + _c1 = r0 > x0; \ + r1 = x1 - y1; \ + _c2 = r1 > x1; \ + r1 -= _c1; \ + _c2 |= r1 > _c1; \ + r2 = x2 - y2 - _c2; \ + } while (0) +#endif + +#ifndef __FP_FRAC_SUB_4 +#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ + do { \ + int _c1, _c2, _c3; \ + r0 = x0 - y0; \ + _c1 = r0 > x0; \ + r1 = x1 - y1; \ + _c2 = r1 > x1; \ + r1 -= _c1; \ + _c2 |= r1 > _c1; \ + r2 = x2 - y2; \ + _c3 = r2 > x2; \ + r2 -= _c2; \ + _c3 |= r2 > _c2; \ + r3 = x3 - y3 - _c3; \ + } while (0) +#endif + +#ifndef __FP_FRAC_DEC_3 +#define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) \ + do { \ + UWtype _t0, _t1, _t2; \ + _t0 = x0, _t1 = x1, _t2 = x2; \ + __FP_FRAC_SUB_3 (x2, x1, x0, _t2, _t1, _t0, y2, y1, y0); \ + } while (0) +#endif + +#ifndef __FP_FRAC_DEC_4 +#define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) \ + do { \ + UWtype _t0, _t1, _t2, _t3; \ + _t0 = x0, _t1 = x1, _t2 = x2, _t3 = x3; \ + __FP_FRAC_SUB_4 (x3,x2,x1,x0,_t3,_t2,_t1,_t0, y3,y2,y1,y0); \ + } while (0) +#endif + +#ifndef __FP_FRAC_ADDI_4 +#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \ + do { \ + UWtype _t; \ + _t = ((x0 += i) < i); \ + x1 += _t; _t = (x1 < _t); \ + x2 += _t; _t = (x2 < _t); \ + x3 += _t; \ + } while (0) +#endif + +/* Convert FP values between word sizes. This appears to be more + * complicated than I'd have expected it to be, so these might be + * wrong... These macros are in any case somewhat bogus because they + * use information about what various FRAC_n variables look like + * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do + * the ones in op-2.h and op-1.h. + */ +#define _FP_FRAC_CONV_1_4(dfs, sfs, D, S) \ + do { \ + if (S##_c != FP_CLS_NAN) \ + _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ + _FP_WFRACBITS_##sfs); \ + else \ + _FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \ + D##_f = S##_f[0]; \ + } while (0) + +#define _FP_FRAC_CONV_2_4(dfs, sfs, D, S) \ + do { \ + if (S##_c != FP_CLS_NAN) \ + _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ + _FP_WFRACBITS_##sfs); \ + else \ + _FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \ + D##_f0 = S##_f[0]; \ + D##_f1 = S##_f[1]; \ + } while (0) + +/* Assembly/disassembly for converting to/from integral types. + * No shifting or overflow handled here. + */ +/* Put the FP value X into r, which is an integer of size rsize. */ +#define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \ + do { \ + if (rsize <= _FP_W_TYPE_SIZE) \ + r = X##_f[0]; \ + else if (rsize <= 2*_FP_W_TYPE_SIZE) \ + { \ + r = X##_f[1]; \ + r <<= _FP_W_TYPE_SIZE; \ + r += X##_f[0]; \ + } \ + else \ + { \ + /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \ + /* and int == 4words as a single case. */ \ + r = X##_f[3]; \ + r <<= _FP_W_TYPE_SIZE; \ + r += X##_f[2]; \ + r <<= _FP_W_TYPE_SIZE; \ + r += X##_f[1]; \ + r <<= _FP_W_TYPE_SIZE; \ + r += X##_f[0]; \ + } \ + } while (0) + +/* "No disassemble Number Five!" */ +/* move an integer of size rsize into X's fractional part. We rely on + * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid + * having to mask the values we store into it. + */ +#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \ + do { \ + X##_f[0] = r; \ + X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \ + X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \ + X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \ + } while (0) + +#define _FP_FRAC_CONV_4_1(dfs, sfs, D, S) \ + do { \ + D##_f[0] = S##_f; \ + D##_f[1] = D##_f[2] = D##_f[3] = 0; \ + _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ + } while (0) + +#define _FP_FRAC_CONV_4_2(dfs, sfs, D, S) \ + do { \ + D##_f[0] = S##_f0; \ + D##_f[1] = S##_f1; \ + D##_f[2] = D##_f[3] = 0; \ + _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ + } while (0) + +#endif |