aboutsummaryrefslogtreecommitdiff
path: root/kernel/locking/rwbase_rt.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /kernel/locking/rwbase_rt.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'kernel/locking/rwbase_rt.c')
-rw-r--r--kernel/locking/rwbase_rt.c298
1 files changed, 298 insertions, 0 deletions
diff --git a/kernel/locking/rwbase_rt.c b/kernel/locking/rwbase_rt.c
new file mode 100644
index 000000000..c201aadb9
--- /dev/null
+++ b/kernel/locking/rwbase_rt.c
@@ -0,0 +1,298 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+/*
+ * RT-specific reader/writer semaphores and reader/writer locks
+ *
+ * down_write/write_lock()
+ * 1) Lock rtmutex
+ * 2) Remove the reader BIAS to force readers into the slow path
+ * 3) Wait until all readers have left the critical section
+ * 4) Mark it write locked
+ *
+ * up_write/write_unlock()
+ * 1) Remove the write locked marker
+ * 2) Set the reader BIAS, so readers can use the fast path again
+ * 3) Unlock rtmutex, to release blocked readers
+ *
+ * down_read/read_lock()
+ * 1) Try fast path acquisition (reader BIAS is set)
+ * 2) Take tmutex::wait_lock, which protects the writelocked flag
+ * 3) If !writelocked, acquire it for read
+ * 4) If writelocked, block on tmutex
+ * 5) unlock rtmutex, goto 1)
+ *
+ * up_read/read_unlock()
+ * 1) Try fast path release (reader count != 1)
+ * 2) Wake the writer waiting in down_write()/write_lock() #3
+ *
+ * down_read/read_lock()#3 has the consequence, that rw semaphores and rw
+ * locks on RT are not writer fair, but writers, which should be avoided in
+ * RT tasks (think mmap_sem), are subject to the rtmutex priority/DL
+ * inheritance mechanism.
+ *
+ * It's possible to make the rw primitives writer fair by keeping a list of
+ * active readers. A blocked writer would force all newly incoming readers
+ * to block on the rtmutex, but the rtmutex would have to be proxy locked
+ * for one reader after the other. We can't use multi-reader inheritance
+ * because there is no way to support that with SCHED_DEADLINE.
+ * Implementing the one by one reader boosting/handover mechanism is a
+ * major surgery for a very dubious value.
+ *
+ * The risk of writer starvation is there, but the pathological use cases
+ * which trigger it are not necessarily the typical RT workloads.
+ *
+ * Fast-path orderings:
+ * The lock/unlock of readers can run in fast paths: lock and unlock are only
+ * atomic ops, and there is no inner lock to provide ACQUIRE and RELEASE
+ * semantics of rwbase_rt. Atomic ops should thus provide _acquire()
+ * and _release() (or stronger).
+ *
+ * Common code shared between RT rw_semaphore and rwlock
+ */
+
+static __always_inline int rwbase_read_trylock(struct rwbase_rt *rwb)
+{
+ int r;
+
+ /*
+ * Increment reader count, if sem->readers < 0, i.e. READER_BIAS is
+ * set.
+ */
+ for (r = atomic_read(&rwb->readers); r < 0;) {
+ if (likely(atomic_try_cmpxchg_acquire(&rwb->readers, &r, r + 1)))
+ return 1;
+ }
+ return 0;
+}
+
+static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
+ unsigned int state)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ int ret;
+
+ raw_spin_lock_irq(&rtm->wait_lock);
+ /*
+ * Allow readers, as long as the writer has not completely
+ * acquired the semaphore for write.
+ */
+ if (atomic_read(&rwb->readers) != WRITER_BIAS) {
+ atomic_inc(&rwb->readers);
+ raw_spin_unlock_irq(&rtm->wait_lock);
+ return 0;
+ }
+
+ /*
+ * Call into the slow lock path with the rtmutex->wait_lock
+ * held, so this can't result in the following race:
+ *
+ * Reader1 Reader2 Writer
+ * down_read()
+ * down_write()
+ * rtmutex_lock(m)
+ * wait()
+ * down_read()
+ * unlock(m->wait_lock)
+ * up_read()
+ * wake(Writer)
+ * lock(m->wait_lock)
+ * sem->writelocked=true
+ * unlock(m->wait_lock)
+ *
+ * up_write()
+ * sem->writelocked=false
+ * rtmutex_unlock(m)
+ * down_read()
+ * down_write()
+ * rtmutex_lock(m)
+ * wait()
+ * rtmutex_lock(m)
+ *
+ * That would put Reader1 behind the writer waiting on
+ * Reader2 to call up_read(), which might be unbound.
+ */
+
+ trace_contention_begin(rwb, LCB_F_RT | LCB_F_READ);
+
+ /*
+ * For rwlocks this returns 0 unconditionally, so the below
+ * !ret conditionals are optimized out.
+ */
+ ret = rwbase_rtmutex_slowlock_locked(rtm, state);
+
+ /*
+ * On success the rtmutex is held, so there can't be a writer
+ * active. Increment the reader count and immediately drop the
+ * rtmutex again.
+ *
+ * rtmutex->wait_lock has to be unlocked in any case of course.
+ */
+ if (!ret)
+ atomic_inc(&rwb->readers);
+ raw_spin_unlock_irq(&rtm->wait_lock);
+ if (!ret)
+ rwbase_rtmutex_unlock(rtm);
+
+ trace_contention_end(rwb, ret);
+ return ret;
+}
+
+static __always_inline int rwbase_read_lock(struct rwbase_rt *rwb,
+ unsigned int state)
+{
+ if (rwbase_read_trylock(rwb))
+ return 0;
+
+ return __rwbase_read_lock(rwb, state);
+}
+
+static void __sched __rwbase_read_unlock(struct rwbase_rt *rwb,
+ unsigned int state)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ struct task_struct *owner;
+ DEFINE_RT_WAKE_Q(wqh);
+
+ raw_spin_lock_irq(&rtm->wait_lock);
+ /*
+ * Wake the writer, i.e. the rtmutex owner. It might release the
+ * rtmutex concurrently in the fast path (due to a signal), but to
+ * clean up rwb->readers it needs to acquire rtm->wait_lock. The
+ * worst case which can happen is a spurious wakeup.
+ */
+ owner = rt_mutex_owner(rtm);
+ if (owner)
+ rt_mutex_wake_q_add_task(&wqh, owner, state);
+
+ /* Pairs with the preempt_enable in rt_mutex_wake_up_q() */
+ preempt_disable();
+ raw_spin_unlock_irq(&rtm->wait_lock);
+ rt_mutex_wake_up_q(&wqh);
+}
+
+static __always_inline void rwbase_read_unlock(struct rwbase_rt *rwb,
+ unsigned int state)
+{
+ /*
+ * rwb->readers can only hit 0 when a writer is waiting for the
+ * active readers to leave the critical section.
+ *
+ * dec_and_test() is fully ordered, provides RELEASE.
+ */
+ if (unlikely(atomic_dec_and_test(&rwb->readers)))
+ __rwbase_read_unlock(rwb, state);
+}
+
+static inline void __rwbase_write_unlock(struct rwbase_rt *rwb, int bias,
+ unsigned long flags)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+
+ /*
+ * _release() is needed in case that reader is in fast path, pairing
+ * with atomic_try_cmpxchg_acquire() in rwbase_read_trylock().
+ */
+ (void)atomic_add_return_release(READER_BIAS - bias, &rwb->readers);
+ raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
+ rwbase_rtmutex_unlock(rtm);
+}
+
+static inline void rwbase_write_unlock(struct rwbase_rt *rwb)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&rtm->wait_lock, flags);
+ __rwbase_write_unlock(rwb, WRITER_BIAS, flags);
+}
+
+static inline void rwbase_write_downgrade(struct rwbase_rt *rwb)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&rtm->wait_lock, flags);
+ /* Release it and account current as reader */
+ __rwbase_write_unlock(rwb, WRITER_BIAS - 1, flags);
+}
+
+static inline bool __rwbase_write_trylock(struct rwbase_rt *rwb)
+{
+ /* Can do without CAS because we're serialized by wait_lock. */
+ lockdep_assert_held(&rwb->rtmutex.wait_lock);
+
+ /*
+ * _acquire is needed in case the reader is in the fast path, pairing
+ * with rwbase_read_unlock(), provides ACQUIRE.
+ */
+ if (!atomic_read_acquire(&rwb->readers)) {
+ atomic_set(&rwb->readers, WRITER_BIAS);
+ return 1;
+ }
+
+ return 0;
+}
+
+static int __sched rwbase_write_lock(struct rwbase_rt *rwb,
+ unsigned int state)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ unsigned long flags;
+
+ /* Take the rtmutex as a first step */
+ if (rwbase_rtmutex_lock_state(rtm, state))
+ return -EINTR;
+
+ /* Force readers into slow path */
+ atomic_sub(READER_BIAS, &rwb->readers);
+
+ raw_spin_lock_irqsave(&rtm->wait_lock, flags);
+ if (__rwbase_write_trylock(rwb))
+ goto out_unlock;
+
+ rwbase_set_and_save_current_state(state);
+ trace_contention_begin(rwb, LCB_F_RT | LCB_F_WRITE);
+ for (;;) {
+ /* Optimized out for rwlocks */
+ if (rwbase_signal_pending_state(state, current)) {
+ rwbase_restore_current_state();
+ __rwbase_write_unlock(rwb, 0, flags);
+ trace_contention_end(rwb, -EINTR);
+ return -EINTR;
+ }
+
+ if (__rwbase_write_trylock(rwb))
+ break;
+
+ raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
+ rwbase_schedule();
+ raw_spin_lock_irqsave(&rtm->wait_lock, flags);
+
+ set_current_state(state);
+ }
+ rwbase_restore_current_state();
+ trace_contention_end(rwb, 0);
+
+out_unlock:
+ raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
+ return 0;
+}
+
+static inline int rwbase_write_trylock(struct rwbase_rt *rwb)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ unsigned long flags;
+
+ if (!rwbase_rtmutex_trylock(rtm))
+ return 0;
+
+ atomic_sub(READER_BIAS, &rwb->readers);
+
+ raw_spin_lock_irqsave(&rtm->wait_lock, flags);
+ if (__rwbase_write_trylock(rwb)) {
+ raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
+ return 1;
+ }
+ __rwbase_write_unlock(rwb, 0, flags);
+ return 0;
+}