aboutsummaryrefslogtreecommitdiff
path: root/kernel/task_work.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /kernel/task_work.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'kernel/task_work.c')
-rw-r--r--kernel/task_work.c184
1 files changed, 184 insertions, 0 deletions
diff --git a/kernel/task_work.c b/kernel/task_work.c
new file mode 100644
index 000000000..065e1ef8f
--- /dev/null
+++ b/kernel/task_work.c
@@ -0,0 +1,184 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/spinlock.h>
+#include <linux/task_work.h>
+#include <linux/resume_user_mode.h>
+
+static struct callback_head work_exited; /* all we need is ->next == NULL */
+
+/**
+ * task_work_add - ask the @task to execute @work->func()
+ * @task: the task which should run the callback
+ * @work: the callback to run
+ * @notify: how to notify the targeted task
+ *
+ * Queue @work for task_work_run() below and notify the @task if @notify
+ * is @TWA_RESUME, @TWA_SIGNAL, or @TWA_SIGNAL_NO_IPI.
+ *
+ * @TWA_SIGNAL works like signals, in that the it will interrupt the targeted
+ * task and run the task_work, regardless of whether the task is currently
+ * running in the kernel or userspace.
+ * @TWA_SIGNAL_NO_IPI works like @TWA_SIGNAL, except it doesn't send a
+ * reschedule IPI to force the targeted task to reschedule and run task_work.
+ * This can be advantageous if there's no strict requirement that the
+ * task_work be run as soon as possible, just whenever the task enters the
+ * kernel anyway.
+ * @TWA_RESUME work is run only when the task exits the kernel and returns to
+ * user mode, or before entering guest mode.
+ *
+ * Fails if the @task is exiting/exited and thus it can't process this @work.
+ * Otherwise @work->func() will be called when the @task goes through one of
+ * the aforementioned transitions, or exits.
+ *
+ * If the targeted task is exiting, then an error is returned and the work item
+ * is not queued. It's up to the caller to arrange for an alternative mechanism
+ * in that case.
+ *
+ * Note: there is no ordering guarantee on works queued here. The task_work
+ * list is LIFO.
+ *
+ * RETURNS:
+ * 0 if succeeds or -ESRCH.
+ */
+int task_work_add(struct task_struct *task, struct callback_head *work,
+ enum task_work_notify_mode notify)
+{
+ struct callback_head *head;
+
+ /* record the work call stack in order to print it in KASAN reports */
+ kasan_record_aux_stack(work);
+
+ head = READ_ONCE(task->task_works);
+ do {
+ if (unlikely(head == &work_exited))
+ return -ESRCH;
+ work->next = head;
+ } while (!try_cmpxchg(&task->task_works, &head, work));
+
+ switch (notify) {
+ case TWA_NONE:
+ break;
+ case TWA_RESUME:
+ set_notify_resume(task);
+ break;
+ case TWA_SIGNAL:
+ set_notify_signal(task);
+ break;
+ case TWA_SIGNAL_NO_IPI:
+ __set_notify_signal(task);
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ break;
+ }
+
+ return 0;
+}
+
+/**
+ * task_work_cancel_match - cancel a pending work added by task_work_add()
+ * @task: the task which should execute the work
+ * @match: match function to call
+ *
+ * RETURNS:
+ * The found work or NULL if not found.
+ */
+struct callback_head *
+task_work_cancel_match(struct task_struct *task,
+ bool (*match)(struct callback_head *, void *data),
+ void *data)
+{
+ struct callback_head **pprev = &task->task_works;
+ struct callback_head *work;
+ unsigned long flags;
+
+ if (likely(!task_work_pending(task)))
+ return NULL;
+ /*
+ * If cmpxchg() fails we continue without updating pprev.
+ * Either we raced with task_work_add() which added the
+ * new entry before this work, we will find it again. Or
+ * we raced with task_work_run(), *pprev == NULL/exited.
+ */
+ raw_spin_lock_irqsave(&task->pi_lock, flags);
+ work = READ_ONCE(*pprev);
+ while (work) {
+ if (!match(work, data)) {
+ pprev = &work->next;
+ work = READ_ONCE(*pprev);
+ } else if (try_cmpxchg(pprev, &work, work->next))
+ break;
+ }
+ raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+
+ return work;
+}
+
+static bool task_work_func_match(struct callback_head *cb, void *data)
+{
+ return cb->func == data;
+}
+
+/**
+ * task_work_cancel - cancel a pending work added by task_work_add()
+ * @task: the task which should execute the work
+ * @func: identifies the work to remove
+ *
+ * Find the last queued pending work with ->func == @func and remove
+ * it from queue.
+ *
+ * RETURNS:
+ * The found work or NULL if not found.
+ */
+struct callback_head *
+task_work_cancel(struct task_struct *task, task_work_func_t func)
+{
+ return task_work_cancel_match(task, task_work_func_match, func);
+}
+
+/**
+ * task_work_run - execute the works added by task_work_add()
+ *
+ * Flush the pending works. Should be used by the core kernel code.
+ * Called before the task returns to the user-mode or stops, or when
+ * it exits. In the latter case task_work_add() can no longer add the
+ * new work after task_work_run() returns.
+ */
+void task_work_run(void)
+{
+ struct task_struct *task = current;
+ struct callback_head *work, *head, *next;
+
+ for (;;) {
+ /*
+ * work->func() can do task_work_add(), do not set
+ * work_exited unless the list is empty.
+ */
+ work = READ_ONCE(task->task_works);
+ do {
+ head = NULL;
+ if (!work) {
+ if (task->flags & PF_EXITING)
+ head = &work_exited;
+ else
+ break;
+ }
+ } while (!try_cmpxchg(&task->task_works, &work, head));
+
+ if (!work)
+ break;
+ /*
+ * Synchronize with task_work_cancel(). It can not remove
+ * the first entry == work, cmpxchg(task_works) must fail.
+ * But it can remove another entry from the ->next list.
+ */
+ raw_spin_lock_irq(&task->pi_lock);
+ raw_spin_unlock_irq(&task->pi_lock);
+
+ do {
+ next = work->next;
+ work->func(work);
+ work = next;
+ cond_resched();
+ } while (work);
+ }
+}