diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /lib/cpu_rmap.c | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'lib/cpu_rmap.c')
-rw-r--r-- | lib/cpu_rmap.c | 304 |
1 files changed, 304 insertions, 0 deletions
diff --git a/lib/cpu_rmap.c b/lib/cpu_rmap.c new file mode 100644 index 000000000..f08d9c56f --- /dev/null +++ b/lib/cpu_rmap.c @@ -0,0 +1,304 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * cpu_rmap.c: CPU affinity reverse-map support + * Copyright 2011 Solarflare Communications Inc. + */ + +#include <linux/cpu_rmap.h> +#include <linux/interrupt.h> +#include <linux/export.h> + +/* + * These functions maintain a mapping from CPUs to some ordered set of + * objects with CPU affinities. This can be seen as a reverse-map of + * CPU affinity. However, we do not assume that the object affinities + * cover all CPUs in the system. For those CPUs not directly covered + * by object affinities, we attempt to find a nearest object based on + * CPU topology. + */ + +/** + * alloc_cpu_rmap - allocate CPU affinity reverse-map + * @size: Number of objects to be mapped + * @flags: Allocation flags e.g. %GFP_KERNEL + */ +struct cpu_rmap *alloc_cpu_rmap(unsigned int size, gfp_t flags) +{ + struct cpu_rmap *rmap; + unsigned int cpu; + size_t obj_offset; + + /* This is a silly number of objects, and we use u16 indices. */ + if (size > 0xffff) + return NULL; + + /* Offset of object pointer array from base structure */ + obj_offset = ALIGN(offsetof(struct cpu_rmap, near[nr_cpu_ids]), + sizeof(void *)); + + rmap = kzalloc(obj_offset + size * sizeof(rmap->obj[0]), flags); + if (!rmap) + return NULL; + + kref_init(&rmap->refcount); + rmap->obj = (void **)((char *)rmap + obj_offset); + + /* Initially assign CPUs to objects on a rota, since we have + * no idea where the objects are. Use infinite distance, so + * any object with known distance is preferable. Include the + * CPUs that are not present/online, since we definitely want + * any newly-hotplugged CPUs to have some object assigned. + */ + for_each_possible_cpu(cpu) { + rmap->near[cpu].index = cpu % size; + rmap->near[cpu].dist = CPU_RMAP_DIST_INF; + } + + rmap->size = size; + return rmap; +} +EXPORT_SYMBOL(alloc_cpu_rmap); + +/** + * cpu_rmap_release - internal reclaiming helper called from kref_put + * @ref: kref to struct cpu_rmap + */ +static void cpu_rmap_release(struct kref *ref) +{ + struct cpu_rmap *rmap = container_of(ref, struct cpu_rmap, refcount); + kfree(rmap); +} + +/** + * cpu_rmap_get - internal helper to get new ref on a cpu_rmap + * @rmap: reverse-map allocated with alloc_cpu_rmap() + */ +static inline void cpu_rmap_get(struct cpu_rmap *rmap) +{ + kref_get(&rmap->refcount); +} + +/** + * cpu_rmap_put - release ref on a cpu_rmap + * @rmap: reverse-map allocated with alloc_cpu_rmap() + */ +int cpu_rmap_put(struct cpu_rmap *rmap) +{ + return kref_put(&rmap->refcount, cpu_rmap_release); +} +EXPORT_SYMBOL(cpu_rmap_put); + +/* Reevaluate nearest object for given CPU, comparing with the given + * neighbours at the given distance. + */ +static bool cpu_rmap_copy_neigh(struct cpu_rmap *rmap, unsigned int cpu, + const struct cpumask *mask, u16 dist) +{ + int neigh; + + for_each_cpu(neigh, mask) { + if (rmap->near[cpu].dist > dist && + rmap->near[neigh].dist <= dist) { + rmap->near[cpu].index = rmap->near[neigh].index; + rmap->near[cpu].dist = dist; + return true; + } + } + return false; +} + +#ifdef DEBUG +static void debug_print_rmap(const struct cpu_rmap *rmap, const char *prefix) +{ + unsigned index; + unsigned int cpu; + + pr_info("cpu_rmap %p, %s:\n", rmap, prefix); + + for_each_possible_cpu(cpu) { + index = rmap->near[cpu].index; + pr_info("cpu %d -> obj %u (distance %u)\n", + cpu, index, rmap->near[cpu].dist); + } +} +#else +static inline void +debug_print_rmap(const struct cpu_rmap *rmap, const char *prefix) +{ +} +#endif + +/** + * cpu_rmap_add - add object to a rmap + * @rmap: CPU rmap allocated with alloc_cpu_rmap() + * @obj: Object to add to rmap + * + * Return index of object. + */ +int cpu_rmap_add(struct cpu_rmap *rmap, void *obj) +{ + u16 index; + + BUG_ON(rmap->used >= rmap->size); + index = rmap->used++; + rmap->obj[index] = obj; + return index; +} +EXPORT_SYMBOL(cpu_rmap_add); + +/** + * cpu_rmap_update - update CPU rmap following a change of object affinity + * @rmap: CPU rmap to update + * @index: Index of object whose affinity changed + * @affinity: New CPU affinity of object + */ +int cpu_rmap_update(struct cpu_rmap *rmap, u16 index, + const struct cpumask *affinity) +{ + cpumask_var_t update_mask; + unsigned int cpu; + + if (unlikely(!zalloc_cpumask_var(&update_mask, GFP_KERNEL))) + return -ENOMEM; + + /* Invalidate distance for all CPUs for which this used to be + * the nearest object. Mark those CPUs for update. + */ + for_each_online_cpu(cpu) { + if (rmap->near[cpu].index == index) { + rmap->near[cpu].dist = CPU_RMAP_DIST_INF; + cpumask_set_cpu(cpu, update_mask); + } + } + + debug_print_rmap(rmap, "after invalidating old distances"); + + /* Set distance to 0 for all CPUs in the new affinity mask. + * Mark all CPUs within their NUMA nodes for update. + */ + for_each_cpu(cpu, affinity) { + rmap->near[cpu].index = index; + rmap->near[cpu].dist = 0; + cpumask_or(update_mask, update_mask, + cpumask_of_node(cpu_to_node(cpu))); + } + + debug_print_rmap(rmap, "after updating neighbours"); + + /* Update distances based on topology */ + for_each_cpu(cpu, update_mask) { + if (cpu_rmap_copy_neigh(rmap, cpu, + topology_sibling_cpumask(cpu), 1)) + continue; + if (cpu_rmap_copy_neigh(rmap, cpu, + topology_core_cpumask(cpu), 2)) + continue; + if (cpu_rmap_copy_neigh(rmap, cpu, + cpumask_of_node(cpu_to_node(cpu)), 3)) + continue; + /* We could continue into NUMA node distances, but for now + * we give up. + */ + } + + debug_print_rmap(rmap, "after copying neighbours"); + + free_cpumask_var(update_mask); + return 0; +} +EXPORT_SYMBOL(cpu_rmap_update); + +/* Glue between IRQ affinity notifiers and CPU rmaps */ + +struct irq_glue { + struct irq_affinity_notify notify; + struct cpu_rmap *rmap; + u16 index; +}; + +/** + * free_irq_cpu_rmap - free a CPU affinity reverse-map used for IRQs + * @rmap: Reverse-map allocated with alloc_irq_cpu_map(), or %NULL + * + * Must be called in process context, before freeing the IRQs. + */ +void free_irq_cpu_rmap(struct cpu_rmap *rmap) +{ + struct irq_glue *glue; + u16 index; + + if (!rmap) + return; + + for (index = 0; index < rmap->used; index++) { + glue = rmap->obj[index]; + irq_set_affinity_notifier(glue->notify.irq, NULL); + } + + cpu_rmap_put(rmap); +} +EXPORT_SYMBOL(free_irq_cpu_rmap); + +/** + * irq_cpu_rmap_notify - callback for IRQ subsystem when IRQ affinity updated + * @notify: struct irq_affinity_notify passed by irq/manage.c + * @mask: cpu mask for new SMP affinity + * + * This is executed in workqueue context. + */ +static void +irq_cpu_rmap_notify(struct irq_affinity_notify *notify, const cpumask_t *mask) +{ + struct irq_glue *glue = + container_of(notify, struct irq_glue, notify); + int rc; + + rc = cpu_rmap_update(glue->rmap, glue->index, mask); + if (rc) + pr_warn("irq_cpu_rmap_notify: update failed: %d\n", rc); +} + +/** + * irq_cpu_rmap_release - reclaiming callback for IRQ subsystem + * @ref: kref to struct irq_affinity_notify passed by irq/manage.c + */ +static void irq_cpu_rmap_release(struct kref *ref) +{ + struct irq_glue *glue = + container_of(ref, struct irq_glue, notify.kref); + + cpu_rmap_put(glue->rmap); + kfree(glue); +} + +/** + * irq_cpu_rmap_add - add an IRQ to a CPU affinity reverse-map + * @rmap: The reverse-map + * @irq: The IRQ number + * + * This adds an IRQ affinity notifier that will update the reverse-map + * automatically. + * + * Must be called in process context, after the IRQ is allocated but + * before it is bound with request_irq(). + */ +int irq_cpu_rmap_add(struct cpu_rmap *rmap, int irq) +{ + struct irq_glue *glue = kzalloc(sizeof(*glue), GFP_KERNEL); + int rc; + + if (!glue) + return -ENOMEM; + glue->notify.notify = irq_cpu_rmap_notify; + glue->notify.release = irq_cpu_rmap_release; + glue->rmap = rmap; + cpu_rmap_get(rmap); + glue->index = cpu_rmap_add(rmap, glue); + rc = irq_set_affinity_notifier(irq, &glue->notify); + if (rc) { + cpu_rmap_put(glue->rmap); + kfree(glue); + } + return rc; +} +EXPORT_SYMBOL(irq_cpu_rmap_add); |