aboutsummaryrefslogtreecommitdiff
path: root/lib/decompress_unzstd.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /lib/decompress_unzstd.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'lib/decompress_unzstd.c')
-rw-r--r--lib/decompress_unzstd.c350
1 files changed, 350 insertions, 0 deletions
diff --git a/lib/decompress_unzstd.c b/lib/decompress_unzstd.c
new file mode 100644
index 000000000..a512b99ae
--- /dev/null
+++ b/lib/decompress_unzstd.c
@@ -0,0 +1,350 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Important notes about in-place decompression
+ *
+ * At least on x86, the kernel is decompressed in place: the compressed data
+ * is placed to the end of the output buffer, and the decompressor overwrites
+ * most of the compressed data. There must be enough safety margin to
+ * guarantee that the write position is always behind the read position.
+ *
+ * The safety margin for ZSTD with a 128 KB block size is calculated below.
+ * Note that the margin with ZSTD is bigger than with GZIP or XZ!
+ *
+ * The worst case for in-place decompression is that the beginning of
+ * the file is compressed extremely well, and the rest of the file is
+ * uncompressible. Thus, we must look for worst-case expansion when the
+ * compressor is encoding uncompressible data.
+ *
+ * The structure of the .zst file in case of a compressed kernel is as follows.
+ * Maximum sizes (as bytes) of the fields are in parenthesis.
+ *
+ * Frame Header: (18)
+ * Blocks: (N)
+ * Checksum: (4)
+ *
+ * The frame header and checksum overhead is at most 22 bytes.
+ *
+ * ZSTD stores the data in blocks. Each block has a header whose size is
+ * a 3 bytes. After the block header, there is up to 128 KB of payload.
+ * The maximum uncompressed size of the payload is 128 KB. The minimum
+ * uncompressed size of the payload is never less than the payload size
+ * (excluding the block header).
+ *
+ * The assumption, that the uncompressed size of the payload is never
+ * smaller than the payload itself, is valid only when talking about
+ * the payload as a whole. It is possible that the payload has parts where
+ * the decompressor consumes more input than it produces output. Calculating
+ * the worst case for this would be tricky. Instead of trying to do that,
+ * let's simply make sure that the decompressor never overwrites any bytes
+ * of the payload which it is currently reading.
+ *
+ * Now we have enough information to calculate the safety margin. We need
+ * - 22 bytes for the .zst file format headers;
+ * - 3 bytes per every 128 KiB of uncompressed size (one block header per
+ * block); and
+ * - 128 KiB (biggest possible zstd block size) to make sure that the
+ * decompressor never overwrites anything from the block it is currently
+ * reading.
+ *
+ * We get the following formula:
+ *
+ * safety_margin = 22 + uncompressed_size * 3 / 131072 + 131072
+ * <= 22 + (uncompressed_size >> 15) + 131072
+ */
+
+/*
+ * Preboot environments #include "path/to/decompress_unzstd.c".
+ * All of the source files we depend on must be #included.
+ * zstd's only source dependency is xxhash, which has no source
+ * dependencies.
+ *
+ * When UNZSTD_PREBOOT is defined we declare __decompress(), which is
+ * used for kernel decompression, instead of unzstd().
+ *
+ * Define __DISABLE_EXPORTS in preboot environments to prevent symbols
+ * from xxhash and zstd from being exported by the EXPORT_SYMBOL macro.
+ */
+#ifdef STATIC
+# define UNZSTD_PREBOOT
+# include "xxhash.c"
+# include "zstd/decompress_sources.h"
+#endif
+
+#include <linux/decompress/mm.h>
+#include <linux/kernel.h>
+#include <linux/zstd.h>
+
+/* 128MB is the maximum window size supported by zstd. */
+#define ZSTD_WINDOWSIZE_MAX (1 << ZSTD_WINDOWLOG_MAX)
+/*
+ * Size of the input and output buffers in multi-call mode.
+ * Pick a larger size because it isn't used during kernel decompression,
+ * since that is single pass, and we have to allocate a large buffer for
+ * zstd's window anyway. The larger size speeds up initramfs decompression.
+ */
+#define ZSTD_IOBUF_SIZE (1 << 17)
+
+static int INIT handle_zstd_error(size_t ret, void (*error)(char *x))
+{
+ const zstd_error_code err = zstd_get_error_code(ret);
+
+ if (!zstd_is_error(ret))
+ return 0;
+
+ /*
+ * zstd_get_error_name() cannot be used because error takes a char *
+ * not a const char *
+ */
+ switch (err) {
+ case ZSTD_error_memory_allocation:
+ error("ZSTD decompressor ran out of memory");
+ break;
+ case ZSTD_error_prefix_unknown:
+ error("Input is not in the ZSTD format (wrong magic bytes)");
+ break;
+ case ZSTD_error_dstSize_tooSmall:
+ case ZSTD_error_corruption_detected:
+ case ZSTD_error_checksum_wrong:
+ error("ZSTD-compressed data is corrupt");
+ break;
+ default:
+ error("ZSTD-compressed data is probably corrupt");
+ break;
+ }
+ return -1;
+}
+
+/*
+ * Handle the case where we have the entire input and output in one segment.
+ * We can allocate less memory (no circular buffer for the sliding window),
+ * and avoid some memcpy() calls.
+ */
+static int INIT decompress_single(const u8 *in_buf, long in_len, u8 *out_buf,
+ long out_len, long *in_pos,
+ void (*error)(char *x))
+{
+ const size_t wksp_size = zstd_dctx_workspace_bound();
+ void *wksp = large_malloc(wksp_size);
+ zstd_dctx *dctx = zstd_init_dctx(wksp, wksp_size);
+ int err;
+ size_t ret;
+
+ if (dctx == NULL) {
+ error("Out of memory while allocating zstd_dctx");
+ err = -1;
+ goto out;
+ }
+ /*
+ * Find out how large the frame actually is, there may be junk at
+ * the end of the frame that zstd_decompress_dctx() can't handle.
+ */
+ ret = zstd_find_frame_compressed_size(in_buf, in_len);
+ err = handle_zstd_error(ret, error);
+ if (err)
+ goto out;
+ in_len = (long)ret;
+
+ ret = zstd_decompress_dctx(dctx, out_buf, out_len, in_buf, in_len);
+ err = handle_zstd_error(ret, error);
+ if (err)
+ goto out;
+
+ if (in_pos != NULL)
+ *in_pos = in_len;
+
+ err = 0;
+out:
+ if (wksp != NULL)
+ large_free(wksp);
+ return err;
+}
+
+static int INIT __unzstd(unsigned char *in_buf, long in_len,
+ long (*fill)(void*, unsigned long),
+ long (*flush)(void*, unsigned long),
+ unsigned char *out_buf, long out_len,
+ long *in_pos,
+ void (*error)(char *x))
+{
+ zstd_in_buffer in;
+ zstd_out_buffer out;
+ zstd_frame_header header;
+ void *in_allocated = NULL;
+ void *out_allocated = NULL;
+ void *wksp = NULL;
+ size_t wksp_size;
+ zstd_dstream *dstream;
+ int err;
+ size_t ret;
+
+ /*
+ * ZSTD decompression code won't be happy if the buffer size is so big
+ * that its end address overflows. When the size is not provided, make
+ * it as big as possible without having the end address overflow.
+ */
+ if (out_len == 0)
+ out_len = UINTPTR_MAX - (uintptr_t)out_buf;
+
+ if (fill == NULL && flush == NULL)
+ /*
+ * We can decompress faster and with less memory when we have a
+ * single chunk.
+ */
+ return decompress_single(in_buf, in_len, out_buf, out_len,
+ in_pos, error);
+
+ /*
+ * If in_buf is not provided, we must be using fill(), so allocate
+ * a large enough buffer. If it is provided, it must be at least
+ * ZSTD_IOBUF_SIZE large.
+ */
+ if (in_buf == NULL) {
+ in_allocated = large_malloc(ZSTD_IOBUF_SIZE);
+ if (in_allocated == NULL) {
+ error("Out of memory while allocating input buffer");
+ err = -1;
+ goto out;
+ }
+ in_buf = in_allocated;
+ in_len = 0;
+ }
+ /* Read the first chunk, since we need to decode the frame header. */
+ if (fill != NULL)
+ in_len = fill(in_buf, ZSTD_IOBUF_SIZE);
+ if (in_len < 0) {
+ error("ZSTD-compressed data is truncated");
+ err = -1;
+ goto out;
+ }
+ /* Set the first non-empty input buffer. */
+ in.src = in_buf;
+ in.pos = 0;
+ in.size = in_len;
+ /* Allocate the output buffer if we are using flush(). */
+ if (flush != NULL) {
+ out_allocated = large_malloc(ZSTD_IOBUF_SIZE);
+ if (out_allocated == NULL) {
+ error("Out of memory while allocating output buffer");
+ err = -1;
+ goto out;
+ }
+ out_buf = out_allocated;
+ out_len = ZSTD_IOBUF_SIZE;
+ }
+ /* Set the output buffer. */
+ out.dst = out_buf;
+ out.pos = 0;
+ out.size = out_len;
+
+ /*
+ * We need to know the window size to allocate the zstd_dstream.
+ * Since we are streaming, we need to allocate a buffer for the sliding
+ * window. The window size varies from 1 KB to ZSTD_WINDOWSIZE_MAX
+ * (8 MB), so it is important to use the actual value so as not to
+ * waste memory when it is smaller.
+ */
+ ret = zstd_get_frame_header(&header, in.src, in.size);
+ err = handle_zstd_error(ret, error);
+ if (err)
+ goto out;
+ if (ret != 0) {
+ error("ZSTD-compressed data has an incomplete frame header");
+ err = -1;
+ goto out;
+ }
+ if (header.windowSize > ZSTD_WINDOWSIZE_MAX) {
+ error("ZSTD-compressed data has too large a window size");
+ err = -1;
+ goto out;
+ }
+
+ /*
+ * Allocate the zstd_dstream now that we know how much memory is
+ * required.
+ */
+ wksp_size = zstd_dstream_workspace_bound(header.windowSize);
+ wksp = large_malloc(wksp_size);
+ dstream = zstd_init_dstream(header.windowSize, wksp, wksp_size);
+ if (dstream == NULL) {
+ error("Out of memory while allocating ZSTD_DStream");
+ err = -1;
+ goto out;
+ }
+
+ /*
+ * Decompression loop:
+ * Read more data if necessary (error if no more data can be read).
+ * Call the decompression function, which returns 0 when finished.
+ * Flush any data produced if using flush().
+ */
+ if (in_pos != NULL)
+ *in_pos = 0;
+ do {
+ /*
+ * If we need to reload data, either we have fill() and can
+ * try to get more data, or we don't and the input is truncated.
+ */
+ if (in.pos == in.size) {
+ if (in_pos != NULL)
+ *in_pos += in.pos;
+ in_len = fill ? fill(in_buf, ZSTD_IOBUF_SIZE) : -1;
+ if (in_len < 0) {
+ error("ZSTD-compressed data is truncated");
+ err = -1;
+ goto out;
+ }
+ in.pos = 0;
+ in.size = in_len;
+ }
+ /* Returns zero when the frame is complete. */
+ ret = zstd_decompress_stream(dstream, &out, &in);
+ err = handle_zstd_error(ret, error);
+ if (err)
+ goto out;
+ /* Flush all of the data produced if using flush(). */
+ if (flush != NULL && out.pos > 0) {
+ if (out.pos != flush(out.dst, out.pos)) {
+ error("Failed to flush()");
+ err = -1;
+ goto out;
+ }
+ out.pos = 0;
+ }
+ } while (ret != 0);
+
+ if (in_pos != NULL)
+ *in_pos += in.pos;
+
+ err = 0;
+out:
+ if (in_allocated != NULL)
+ large_free(in_allocated);
+ if (out_allocated != NULL)
+ large_free(out_allocated);
+ if (wksp != NULL)
+ large_free(wksp);
+ return err;
+}
+
+#ifndef UNZSTD_PREBOOT
+STATIC int INIT unzstd(unsigned char *buf, long len,
+ long (*fill)(void*, unsigned long),
+ long (*flush)(void*, unsigned long),
+ unsigned char *out_buf,
+ long *pos,
+ void (*error)(char *x))
+{
+ return __unzstd(buf, len, fill, flush, out_buf, 0, pos, error);
+}
+#else
+STATIC int INIT __decompress(unsigned char *buf, long len,
+ long (*fill)(void*, unsigned long),
+ long (*flush)(void*, unsigned long),
+ unsigned char *out_buf, long out_len,
+ long *pos,
+ void (*error)(char *x))
+{
+ return __unzstd(buf, len, fill, flush, out_buf, out_len, pos, error);
+}
+#endif