diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /lib/group_cpus.c | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'lib/group_cpus.c')
-rw-r--r-- | lib/group_cpus.c | 428 |
1 files changed, 428 insertions, 0 deletions
diff --git a/lib/group_cpus.c b/lib/group_cpus.c new file mode 100644 index 000000000..9c837a35f --- /dev/null +++ b/lib/group_cpus.c @@ -0,0 +1,428 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2016 Thomas Gleixner. + * Copyright (C) 2016-2017 Christoph Hellwig. + */ +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/cpu.h> +#include <linux/sort.h> +#include <linux/group_cpus.h> + +#ifdef CONFIG_SMP + +static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, + unsigned int cpus_per_grp) +{ + const struct cpumask *siblmsk; + int cpu, sibl; + + for ( ; cpus_per_grp > 0; ) { + cpu = cpumask_first(nmsk); + + /* Should not happen, but I'm too lazy to think about it */ + if (cpu >= nr_cpu_ids) + return; + + cpumask_clear_cpu(cpu, nmsk); + cpumask_set_cpu(cpu, irqmsk); + cpus_per_grp--; + + /* If the cpu has siblings, use them first */ + siblmsk = topology_sibling_cpumask(cpu); + for (sibl = -1; cpus_per_grp > 0; ) { + sibl = cpumask_next(sibl, siblmsk); + if (sibl >= nr_cpu_ids) + break; + if (!cpumask_test_and_clear_cpu(sibl, nmsk)) + continue; + cpumask_set_cpu(sibl, irqmsk); + cpus_per_grp--; + } + } +} + +static cpumask_var_t *alloc_node_to_cpumask(void) +{ + cpumask_var_t *masks; + int node; + + masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL); + if (!masks) + return NULL; + + for (node = 0; node < nr_node_ids; node++) { + if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL)) + goto out_unwind; + } + + return masks; + +out_unwind: + while (--node >= 0) + free_cpumask_var(masks[node]); + kfree(masks); + return NULL; +} + +static void free_node_to_cpumask(cpumask_var_t *masks) +{ + int node; + + for (node = 0; node < nr_node_ids; node++) + free_cpumask_var(masks[node]); + kfree(masks); +} + +static void build_node_to_cpumask(cpumask_var_t *masks) +{ + int cpu; + + for_each_possible_cpu(cpu) + cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]); +} + +static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask, + const struct cpumask *mask, nodemask_t *nodemsk) +{ + int n, nodes = 0; + + /* Calculate the number of nodes in the supplied affinity mask */ + for_each_node(n) { + if (cpumask_intersects(mask, node_to_cpumask[n])) { + node_set(n, *nodemsk); + nodes++; + } + } + return nodes; +} + +struct node_groups { + unsigned id; + + union { + unsigned ngroups; + unsigned ncpus; + }; +}; + +static int ncpus_cmp_func(const void *l, const void *r) +{ + const struct node_groups *ln = l; + const struct node_groups *rn = r; + + return ln->ncpus - rn->ncpus; +} + +/* + * Allocate group number for each node, so that for each node: + * + * 1) the allocated number is >= 1 + * + * 2) the allocated number is <= active CPU number of this node + * + * The actual allocated total groups may be less than @numgrps when + * active total CPU number is less than @numgrps. + * + * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]' + * for each node. + */ +static void alloc_nodes_groups(unsigned int numgrps, + cpumask_var_t *node_to_cpumask, + const struct cpumask *cpu_mask, + const nodemask_t nodemsk, + struct cpumask *nmsk, + struct node_groups *node_groups) +{ + unsigned n, remaining_ncpus = 0; + + for (n = 0; n < nr_node_ids; n++) { + node_groups[n].id = n; + node_groups[n].ncpus = UINT_MAX; + } + + for_each_node_mask(n, nodemsk) { + unsigned ncpus; + + cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); + ncpus = cpumask_weight(nmsk); + + if (!ncpus) + continue; + remaining_ncpus += ncpus; + node_groups[n].ncpus = ncpus; + } + + numgrps = min_t(unsigned, remaining_ncpus, numgrps); + + sort(node_groups, nr_node_ids, sizeof(node_groups[0]), + ncpus_cmp_func, NULL); + + /* + * Allocate groups for each node according to the ratio of this + * node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is + * bigger than number of active numa nodes. Always start the + * allocation from the node with minimized nr_cpus. + * + * This way guarantees that each active node gets allocated at + * least one group, and the theory is simple: over-allocation + * is only done when this node is assigned by one group, so + * other nodes will be allocated >= 1 groups, since 'numgrps' is + * bigger than number of numa nodes. + * + * One perfect invariant is that number of allocated groups for + * each node is <= CPU count of this node: + * + * 1) suppose there are two nodes: A and B + * ncpu(X) is CPU count of node X + * grps(X) is the group count allocated to node X via this + * algorithm + * + * ncpu(A) <= ncpu(B) + * ncpu(A) + ncpu(B) = N + * grps(A) + grps(B) = G + * + * grps(A) = max(1, round_down(G * ncpu(A) / N)) + * grps(B) = G - grps(A) + * + * both N and G are integer, and 2 <= G <= N, suppose + * G = N - delta, and 0 <= delta <= N - 2 + * + * 2) obviously grps(A) <= ncpu(A) because: + * + * if grps(A) is 1, then grps(A) <= ncpu(A) given + * ncpu(A) >= 1 + * + * otherwise, + * grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N + * + * 3) prove how grps(B) <= ncpu(B): + * + * if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be + * over-allocated, so grps(B) <= ncpu(B), + * + * otherwise: + * + * grps(A) = + * round_down(G * ncpu(A) / N) = + * round_down((N - delta) * ncpu(A) / N) = + * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >= + * round_down((N * ncpu(A) - delta * N) / N) = + * cpu(A) - delta + * + * then: + * + * grps(A) - G >= ncpu(A) - delta - G + * => + * G - grps(A) <= G + delta - ncpu(A) + * => + * grps(B) <= N - ncpu(A) + * => + * grps(B) <= cpu(B) + * + * For nodes >= 3, it can be thought as one node and another big + * node given that is exactly what this algorithm is implemented, + * and we always re-calculate 'remaining_ncpus' & 'numgrps', and + * finally for each node X: grps(X) <= ncpu(X). + * + */ + for (n = 0; n < nr_node_ids; n++) { + unsigned ngroups, ncpus; + + if (node_groups[n].ncpus == UINT_MAX) + continue; + + WARN_ON_ONCE(numgrps == 0); + + ncpus = node_groups[n].ncpus; + ngroups = max_t(unsigned, 1, + numgrps * ncpus / remaining_ncpus); + WARN_ON_ONCE(ngroups > ncpus); + + node_groups[n].ngroups = ngroups; + + remaining_ncpus -= ncpus; + numgrps -= ngroups; + } +} + +static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps, + cpumask_var_t *node_to_cpumask, + const struct cpumask *cpu_mask, + struct cpumask *nmsk, struct cpumask *masks) +{ + unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0; + unsigned int last_grp = numgrps; + unsigned int curgrp = startgrp; + nodemask_t nodemsk = NODE_MASK_NONE; + struct node_groups *node_groups; + + if (cpumask_empty(cpu_mask)) + return 0; + + nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk); + + /* + * If the number of nodes in the mask is greater than or equal the + * number of groups we just spread the groups across the nodes. + */ + if (numgrps <= nodes) { + for_each_node_mask(n, nodemsk) { + /* Ensure that only CPUs which are in both masks are set */ + cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); + cpumask_or(&masks[curgrp], &masks[curgrp], nmsk); + if (++curgrp == last_grp) + curgrp = 0; + } + return numgrps; + } + + node_groups = kcalloc(nr_node_ids, + sizeof(struct node_groups), + GFP_KERNEL); + if (!node_groups) + return -ENOMEM; + + /* allocate group number for each node */ + alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask, + nodemsk, nmsk, node_groups); + for (i = 0; i < nr_node_ids; i++) { + unsigned int ncpus, v; + struct node_groups *nv = &node_groups[i]; + + if (nv->ngroups == UINT_MAX) + continue; + + /* Get the cpus on this node which are in the mask */ + cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]); + ncpus = cpumask_weight(nmsk); + if (!ncpus) + continue; + + WARN_ON_ONCE(nv->ngroups > ncpus); + + /* Account for rounding errors */ + extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups); + + /* Spread allocated groups on CPUs of the current node */ + for (v = 0; v < nv->ngroups; v++, curgrp++) { + cpus_per_grp = ncpus / nv->ngroups; + + /* Account for extra groups to compensate rounding errors */ + if (extra_grps) { + cpus_per_grp++; + --extra_grps; + } + + /* + * wrapping has to be considered given 'startgrp' + * may start anywhere + */ + if (curgrp >= last_grp) + curgrp = 0; + grp_spread_init_one(&masks[curgrp], nmsk, + cpus_per_grp); + } + done += nv->ngroups; + } + kfree(node_groups); + return done; +} + +/** + * group_cpus_evenly - Group all CPUs evenly per NUMA/CPU locality + * @numgrps: number of groups + * + * Return: cpumask array if successful, NULL otherwise. And each element + * includes CPUs assigned to this group + * + * Try to put close CPUs from viewpoint of CPU and NUMA locality into + * same group, and run two-stage grouping: + * 1) allocate present CPUs on these groups evenly first + * 2) allocate other possible CPUs on these groups evenly + * + * We guarantee in the resulted grouping that all CPUs are covered, and + * no same CPU is assigned to multiple groups + */ +struct cpumask *group_cpus_evenly(unsigned int numgrps) +{ + unsigned int curgrp = 0, nr_present = 0, nr_others = 0; + cpumask_var_t *node_to_cpumask; + cpumask_var_t nmsk, npresmsk; + int ret = -ENOMEM; + struct cpumask *masks = NULL; + + if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) + return NULL; + + if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL)) + goto fail_nmsk; + + node_to_cpumask = alloc_node_to_cpumask(); + if (!node_to_cpumask) + goto fail_npresmsk; + + masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL); + if (!masks) + goto fail_node_to_cpumask; + + /* Stabilize the cpumasks */ + cpus_read_lock(); + build_node_to_cpumask(node_to_cpumask); + + /* grouping present CPUs first */ + ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask, + cpu_present_mask, nmsk, masks); + if (ret < 0) + goto fail_build_affinity; + nr_present = ret; + + /* + * Allocate non present CPUs starting from the next group to be + * handled. If the grouping of present CPUs already exhausted the + * group space, assign the non present CPUs to the already + * allocated out groups. + */ + if (nr_present >= numgrps) + curgrp = 0; + else + curgrp = nr_present; + cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask); + ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask, + npresmsk, nmsk, masks); + if (ret >= 0) + nr_others = ret; + + fail_build_affinity: + cpus_read_unlock(); + + if (ret >= 0) + WARN_ON(nr_present + nr_others < numgrps); + + fail_node_to_cpumask: + free_node_to_cpumask(node_to_cpumask); + + fail_npresmsk: + free_cpumask_var(npresmsk); + + fail_nmsk: + free_cpumask_var(nmsk); + if (ret < 0) { + kfree(masks); + return NULL; + } + return masks; +} +#else /* CONFIG_SMP */ +struct cpumask *group_cpus_evenly(unsigned int numgrps) +{ + struct cpumask *masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL); + + if (!masks) + return NULL; + + /* assign all CPUs(cpu 0) to the 1st group only */ + cpumask_copy(&masks[0], cpu_possible_mask); + return masks; +} +#endif /* CONFIG_SMP */ |