diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /net/rds/threads.c | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'net/rds/threads.c')
-rw-r--r-- | net/rds/threads.c | 311 |
1 files changed, 311 insertions, 0 deletions
diff --git a/net/rds/threads.c b/net/rds/threads.c new file mode 100644 index 000000000..1f424cbfc --- /dev/null +++ b/net/rds/threads.c @@ -0,0 +1,311 @@ +/* + * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + */ +#include <linux/kernel.h> +#include <linux/random.h> +#include <linux/export.h> + +#include "rds.h" + +/* + * All of connection management is simplified by serializing it through + * work queues that execute in a connection managing thread. + * + * TCP wants to send acks through sendpage() in response to data_ready(), + * but it needs a process context to do so. + * + * The receive paths need to allocate but can't drop packets (!) so we have + * a thread around to block allocating if the receive fast path sees an + * allocation failure. + */ + +/* Grand Unified Theory of connection life cycle: + * At any point in time, the connection can be in one of these states: + * DOWN, CONNECTING, UP, DISCONNECTING, ERROR + * + * The following transitions are possible: + * ANY -> ERROR + * UP -> DISCONNECTING + * ERROR -> DISCONNECTING + * DISCONNECTING -> DOWN + * DOWN -> CONNECTING + * CONNECTING -> UP + * + * Transition to state DISCONNECTING/DOWN: + * - Inside the shutdown worker; synchronizes with xmit path + * through RDS_IN_XMIT, and with connection management callbacks + * via c_cm_lock. + * + * For receive callbacks, we rely on the underlying transport + * (TCP, IB/RDMA) to provide the necessary synchronisation. + */ +struct workqueue_struct *rds_wq; +EXPORT_SYMBOL_GPL(rds_wq); + +void rds_connect_path_complete(struct rds_conn_path *cp, int curr) +{ + if (!rds_conn_path_transition(cp, curr, RDS_CONN_UP)) { + printk(KERN_WARNING "%s: Cannot transition to state UP, " + "current state is %d\n", + __func__, + atomic_read(&cp->cp_state)); + rds_conn_path_drop(cp, false); + return; + } + + rdsdebug("conn %p for %pI6c to %pI6c complete\n", + cp->cp_conn, &cp->cp_conn->c_laddr, &cp->cp_conn->c_faddr); + + cp->cp_reconnect_jiffies = 0; + set_bit(0, &cp->cp_conn->c_map_queued); + rcu_read_lock(); + if (!rds_destroy_pending(cp->cp_conn)) { + queue_delayed_work(rds_wq, &cp->cp_send_w, 0); + queue_delayed_work(rds_wq, &cp->cp_recv_w, 0); + } + rcu_read_unlock(); + cp->cp_conn->c_proposed_version = RDS_PROTOCOL_VERSION; +} +EXPORT_SYMBOL_GPL(rds_connect_path_complete); + +void rds_connect_complete(struct rds_connection *conn) +{ + rds_connect_path_complete(&conn->c_path[0], RDS_CONN_CONNECTING); +} +EXPORT_SYMBOL_GPL(rds_connect_complete); + +/* + * This random exponential backoff is relied on to eventually resolve racing + * connects. + * + * If connect attempts race then both parties drop both connections and come + * here to wait for a random amount of time before trying again. Eventually + * the backoff range will be so much greater than the time it takes to + * establish a connection that one of the pair will establish the connection + * before the other's random delay fires. + * + * Connection attempts that arrive while a connection is already established + * are also considered to be racing connects. This lets a connection from + * a rebooted machine replace an existing stale connection before the transport + * notices that the connection has failed. + * + * We should *always* start with a random backoff; otherwise a broken connection + * will always take several iterations to be re-established. + */ +void rds_queue_reconnect(struct rds_conn_path *cp) +{ + unsigned long rand; + struct rds_connection *conn = cp->cp_conn; + + rdsdebug("conn %p for %pI6c to %pI6c reconnect jiffies %lu\n", + conn, &conn->c_laddr, &conn->c_faddr, + cp->cp_reconnect_jiffies); + + /* let peer with smaller addr initiate reconnect, to avoid duels */ + if (conn->c_trans->t_type == RDS_TRANS_TCP && + rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) >= 0) + return; + + set_bit(RDS_RECONNECT_PENDING, &cp->cp_flags); + if (cp->cp_reconnect_jiffies == 0) { + cp->cp_reconnect_jiffies = rds_sysctl_reconnect_min_jiffies; + rcu_read_lock(); + if (!rds_destroy_pending(cp->cp_conn)) + queue_delayed_work(rds_wq, &cp->cp_conn_w, 0); + rcu_read_unlock(); + return; + } + + get_random_bytes(&rand, sizeof(rand)); + rdsdebug("%lu delay %lu ceil conn %p for %pI6c -> %pI6c\n", + rand % cp->cp_reconnect_jiffies, cp->cp_reconnect_jiffies, + conn, &conn->c_laddr, &conn->c_faddr); + rcu_read_lock(); + if (!rds_destroy_pending(cp->cp_conn)) + queue_delayed_work(rds_wq, &cp->cp_conn_w, + rand % cp->cp_reconnect_jiffies); + rcu_read_unlock(); + + cp->cp_reconnect_jiffies = min(cp->cp_reconnect_jiffies * 2, + rds_sysctl_reconnect_max_jiffies); +} + +void rds_connect_worker(struct work_struct *work) +{ + struct rds_conn_path *cp = container_of(work, + struct rds_conn_path, + cp_conn_w.work); + struct rds_connection *conn = cp->cp_conn; + int ret; + + if (cp->cp_index > 0 && + rds_addr_cmp(&cp->cp_conn->c_laddr, &cp->cp_conn->c_faddr) >= 0) + return; + clear_bit(RDS_RECONNECT_PENDING, &cp->cp_flags); + ret = rds_conn_path_transition(cp, RDS_CONN_DOWN, RDS_CONN_CONNECTING); + if (ret) { + ret = conn->c_trans->conn_path_connect(cp); + rdsdebug("conn %p for %pI6c to %pI6c dispatched, ret %d\n", + conn, &conn->c_laddr, &conn->c_faddr, ret); + + if (ret) { + if (rds_conn_path_transition(cp, + RDS_CONN_CONNECTING, + RDS_CONN_DOWN)) + rds_queue_reconnect(cp); + else + rds_conn_path_error(cp, "connect failed\n"); + } + } +} + +void rds_send_worker(struct work_struct *work) +{ + struct rds_conn_path *cp = container_of(work, + struct rds_conn_path, + cp_send_w.work); + int ret; + + if (rds_conn_path_state(cp) == RDS_CONN_UP) { + clear_bit(RDS_LL_SEND_FULL, &cp->cp_flags); + ret = rds_send_xmit(cp); + cond_resched(); + rdsdebug("conn %p ret %d\n", cp->cp_conn, ret); + switch (ret) { + case -EAGAIN: + rds_stats_inc(s_send_immediate_retry); + queue_delayed_work(rds_wq, &cp->cp_send_w, 0); + break; + case -ENOMEM: + rds_stats_inc(s_send_delayed_retry); + queue_delayed_work(rds_wq, &cp->cp_send_w, 2); + break; + default: + break; + } + } +} + +void rds_recv_worker(struct work_struct *work) +{ + struct rds_conn_path *cp = container_of(work, + struct rds_conn_path, + cp_recv_w.work); + int ret; + + if (rds_conn_path_state(cp) == RDS_CONN_UP) { + ret = cp->cp_conn->c_trans->recv_path(cp); + rdsdebug("conn %p ret %d\n", cp->cp_conn, ret); + switch (ret) { + case -EAGAIN: + rds_stats_inc(s_recv_immediate_retry); + queue_delayed_work(rds_wq, &cp->cp_recv_w, 0); + break; + case -ENOMEM: + rds_stats_inc(s_recv_delayed_retry); + queue_delayed_work(rds_wq, &cp->cp_recv_w, 2); + break; + default: + break; + } + } +} + +void rds_shutdown_worker(struct work_struct *work) +{ + struct rds_conn_path *cp = container_of(work, + struct rds_conn_path, + cp_down_w); + + rds_conn_shutdown(cp); +} + +void rds_threads_exit(void) +{ + destroy_workqueue(rds_wq); +} + +int rds_threads_init(void) +{ + rds_wq = create_singlethread_workqueue("krdsd"); + if (!rds_wq) + return -ENOMEM; + + return 0; +} + +/* Compare two IPv6 addresses. Return 0 if the two addresses are equal. + * Return 1 if the first is greater. Return -1 if the second is greater. + */ +int rds_addr_cmp(const struct in6_addr *addr1, + const struct in6_addr *addr2) +{ +#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 + const __be64 *a1, *a2; + u64 x, y; + + a1 = (__be64 *)addr1; + a2 = (__be64 *)addr2; + + if (*a1 != *a2) { + if (be64_to_cpu(*a1) < be64_to_cpu(*a2)) + return -1; + else + return 1; + } else { + x = be64_to_cpu(*++a1); + y = be64_to_cpu(*++a2); + if (x < y) + return -1; + else if (x > y) + return 1; + else + return 0; + } +#else + u32 a, b; + int i; + + for (i = 0; i < 4; i++) { + if (addr1->s6_addr32[i] != addr2->s6_addr32[i]) { + a = ntohl(addr1->s6_addr32[i]); + b = ntohl(addr2->s6_addr32[i]); + if (a < b) + return -1; + else if (a > b) + return 1; + } + } + return 0; +#endif +} +EXPORT_SYMBOL_GPL(rds_addr_cmp); |