aboutsummaryrefslogtreecommitdiff
path: root/sound/pci/sis7019.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /sound/pci/sis7019.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'sound/pci/sis7019.c')
-rw-r--r--sound/pci/sis7019.c1404
1 files changed, 1404 insertions, 0 deletions
diff --git a/sound/pci/sis7019.c b/sound/pci/sis7019.c
new file mode 100644
index 000000000..fabe39360
--- /dev/null
+++ b/sound/pci/sis7019.c
@@ -0,0 +1,1404 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for SiS7019 Audio Accelerator
+ *
+ * Copyright (C) 2004-2007, David Dillow
+ * Written by David Dillow <dave@thedillows.org>
+ * Inspired by the Trident 4D-WaveDX/NX driver.
+ *
+ * All rights reserved.
+ */
+
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/time.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <sound/core.h>
+#include <sound/ac97_codec.h>
+#include <sound/initval.h>
+#include "sis7019.h"
+
+MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
+MODULE_DESCRIPTION("SiS7019");
+MODULE_LICENSE("GPL");
+
+static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
+static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
+static bool enable = 1;
+static int codecs = 1;
+
+module_param(index, int, 0444);
+MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
+module_param(id, charp, 0444);
+MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
+module_param(enable, bool, 0444);
+MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
+module_param(codecs, int, 0444);
+MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
+
+static const struct pci_device_id snd_sis7019_ids[] = {
+ { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
+ { 0, }
+};
+
+MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
+
+/* There are three timing modes for the voices.
+ *
+ * For both playback and capture, when the buffer is one or two periods long,
+ * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
+ * to let us know when the periods have ended.
+ *
+ * When performing playback with more than two periods per buffer, we set
+ * the "Stop Sample Offset" and tell the hardware to interrupt us when we
+ * reach it. We then update the offset and continue on until we are
+ * interrupted for the next period.
+ *
+ * Capture channels do not have a SSO, so we allocate a playback channel to
+ * use as a timer for the capture periods. We use the SSO on the playback
+ * channel to clock out virtual periods, and adjust the virtual period length
+ * to maintain synchronization. This algorithm came from the Trident driver.
+ *
+ * FIXME: It'd be nice to make use of some of the synth features in the
+ * hardware, but a woeful lack of documentation is a significant roadblock.
+ */
+struct voice {
+ u16 flags;
+#define VOICE_IN_USE 1
+#define VOICE_CAPTURE 2
+#define VOICE_SSO_TIMING 4
+#define VOICE_SYNC_TIMING 8
+ u16 sync_cso;
+ u16 period_size;
+ u16 buffer_size;
+ u16 sync_period_size;
+ u16 sync_buffer_size;
+ u32 sso;
+ u32 vperiod;
+ struct snd_pcm_substream *substream;
+ struct voice *timing;
+ void __iomem *ctrl_base;
+ void __iomem *wave_base;
+ void __iomem *sync_base;
+ int num;
+};
+
+/* We need four pages to store our wave parameters during a suspend. If
+ * we're not doing power management, we still need to allocate a page
+ * for the silence buffer.
+ */
+#ifdef CONFIG_PM_SLEEP
+#define SIS_SUSPEND_PAGES 4
+#else
+#define SIS_SUSPEND_PAGES 1
+#endif
+
+struct sis7019 {
+ unsigned long ioport;
+ void __iomem *ioaddr;
+ int irq;
+ int codecs_present;
+
+ struct pci_dev *pci;
+ struct snd_pcm *pcm;
+ struct snd_card *card;
+ struct snd_ac97 *ac97[3];
+
+ /* Protect against more than one thread hitting the AC97
+ * registers (in a more polite manner than pounding the hardware
+ * semaphore)
+ */
+ struct mutex ac97_mutex;
+
+ /* voice_lock protects allocation/freeing of the voice descriptions
+ */
+ spinlock_t voice_lock;
+
+ struct voice voices[64];
+ struct voice capture_voice;
+
+ /* Allocate pages to store the internal wave state during
+ * suspends. When we're operating, this can be used as a silence
+ * buffer for a timing channel.
+ */
+ void *suspend_state[SIS_SUSPEND_PAGES];
+
+ int silence_users;
+ dma_addr_t silence_dma_addr;
+};
+
+/* These values are also used by the module param 'codecs' to indicate
+ * which codecs should be present.
+ */
+#define SIS_PRIMARY_CODEC_PRESENT 0x0001
+#define SIS_SECONDARY_CODEC_PRESENT 0x0002
+#define SIS_TERTIARY_CODEC_PRESENT 0x0004
+
+/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
+ * documented range of 8-0xfff8 samples. Given that they are 0-based,
+ * that places our period/buffer range at 9-0xfff9 samples. That makes the
+ * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
+ * max samples / min samples gives us the max periods in a buffer.
+ *
+ * We'll add a constraint upon open that limits the period and buffer sample
+ * size to values that are legal for the hardware.
+ */
+static const struct snd_pcm_hardware sis_playback_hw_info = {
+ .info = (SNDRV_PCM_INFO_MMAP |
+ SNDRV_PCM_INFO_MMAP_VALID |
+ SNDRV_PCM_INFO_INTERLEAVED |
+ SNDRV_PCM_INFO_BLOCK_TRANSFER |
+ SNDRV_PCM_INFO_SYNC_START |
+ SNDRV_PCM_INFO_RESUME),
+ .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
+ SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
+ .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
+ .rate_min = 4000,
+ .rate_max = 48000,
+ .channels_min = 1,
+ .channels_max = 2,
+ .buffer_bytes_max = (0xfff9 * 4),
+ .period_bytes_min = 9,
+ .period_bytes_max = (0xfff9 * 4),
+ .periods_min = 1,
+ .periods_max = (0xfff9 / 9),
+};
+
+static const struct snd_pcm_hardware sis_capture_hw_info = {
+ .info = (SNDRV_PCM_INFO_MMAP |
+ SNDRV_PCM_INFO_MMAP_VALID |
+ SNDRV_PCM_INFO_INTERLEAVED |
+ SNDRV_PCM_INFO_BLOCK_TRANSFER |
+ SNDRV_PCM_INFO_SYNC_START |
+ SNDRV_PCM_INFO_RESUME),
+ .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
+ SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
+ .rates = SNDRV_PCM_RATE_48000,
+ .rate_min = 4000,
+ .rate_max = 48000,
+ .channels_min = 1,
+ .channels_max = 2,
+ .buffer_bytes_max = (0xfff9 * 4),
+ .period_bytes_min = 9,
+ .period_bytes_max = (0xfff9 * 4),
+ .periods_min = 1,
+ .periods_max = (0xfff9 / 9),
+};
+
+static void sis_update_sso(struct voice *voice, u16 period)
+{
+ void __iomem *base = voice->ctrl_base;
+
+ voice->sso += period;
+ if (voice->sso >= voice->buffer_size)
+ voice->sso -= voice->buffer_size;
+
+ /* Enforce the documented hardware minimum offset */
+ if (voice->sso < 8)
+ voice->sso = 8;
+
+ /* The SSO is in the upper 16 bits of the register. */
+ writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
+}
+
+static void sis_update_voice(struct voice *voice)
+{
+ if (voice->flags & VOICE_SSO_TIMING) {
+ sis_update_sso(voice, voice->period_size);
+ } else if (voice->flags & VOICE_SYNC_TIMING) {
+ int sync;
+
+ /* If we've not hit the end of the virtual period, update
+ * our records and keep going.
+ */
+ if (voice->vperiod > voice->period_size) {
+ voice->vperiod -= voice->period_size;
+ if (voice->vperiod < voice->period_size)
+ sis_update_sso(voice, voice->vperiod);
+ else
+ sis_update_sso(voice, voice->period_size);
+ return;
+ }
+
+ /* Calculate our relative offset between the target and
+ * the actual CSO value. Since we're operating in a loop,
+ * if the value is more than half way around, we can
+ * consider ourselves wrapped.
+ */
+ sync = voice->sync_cso;
+ sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
+ if (sync > (voice->sync_buffer_size / 2))
+ sync -= voice->sync_buffer_size;
+
+ /* If sync is positive, then we interrupted too early, and
+ * we'll need to come back in a few samples and try again.
+ * There's a minimum wait, as it takes some time for the DMA
+ * engine to startup, etc...
+ */
+ if (sync > 0) {
+ if (sync < 16)
+ sync = 16;
+ sis_update_sso(voice, sync);
+ return;
+ }
+
+ /* Ok, we interrupted right on time, or (hopefully) just
+ * a bit late. We'll adjst our next waiting period based
+ * on how close we got.
+ *
+ * We need to stay just behind the actual channel to ensure
+ * it really is past a period when we get our interrupt --
+ * otherwise we'll fall into the early code above and have
+ * a minimum wait time, which makes us quite late here,
+ * eating into the user's time to refresh the buffer, esp.
+ * if using small periods.
+ *
+ * If we're less than 9 samples behind, we're on target.
+ * Otherwise, shorten the next vperiod by the amount we've
+ * been delayed.
+ */
+ if (sync > -9)
+ voice->vperiod = voice->sync_period_size + 1;
+ else
+ voice->vperiod = voice->sync_period_size + sync + 10;
+
+ if (voice->vperiod < voice->buffer_size) {
+ sis_update_sso(voice, voice->vperiod);
+ voice->vperiod = 0;
+ } else
+ sis_update_sso(voice, voice->period_size);
+
+ sync = voice->sync_cso + voice->sync_period_size;
+ if (sync >= voice->sync_buffer_size)
+ sync -= voice->sync_buffer_size;
+ voice->sync_cso = sync;
+ }
+
+ snd_pcm_period_elapsed(voice->substream);
+}
+
+static void sis_voice_irq(u32 status, struct voice *voice)
+{
+ int bit;
+
+ while (status) {
+ bit = __ffs(status);
+ status >>= bit + 1;
+ voice += bit;
+ sis_update_voice(voice);
+ voice++;
+ }
+}
+
+static irqreturn_t sis_interrupt(int irq, void *dev)
+{
+ struct sis7019 *sis = dev;
+ unsigned long io = sis->ioport;
+ struct voice *voice;
+ u32 intr, status;
+
+ /* We only use the DMA interrupts, and we don't enable any other
+ * source of interrupts. But, it is possible to see an interrupt
+ * status that didn't actually interrupt us, so eliminate anything
+ * we're not expecting to avoid falsely claiming an IRQ, and an
+ * ensuing endless loop.
+ */
+ intr = inl(io + SIS_GISR);
+ intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
+ SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
+ if (!intr)
+ return IRQ_NONE;
+
+ do {
+ status = inl(io + SIS_PISR_A);
+ if (status) {
+ sis_voice_irq(status, sis->voices);
+ outl(status, io + SIS_PISR_A);
+ }
+
+ status = inl(io + SIS_PISR_B);
+ if (status) {
+ sis_voice_irq(status, &sis->voices[32]);
+ outl(status, io + SIS_PISR_B);
+ }
+
+ status = inl(io + SIS_RISR);
+ if (status) {
+ voice = &sis->capture_voice;
+ if (!voice->timing)
+ snd_pcm_period_elapsed(voice->substream);
+
+ outl(status, io + SIS_RISR);
+ }
+
+ outl(intr, io + SIS_GISR);
+ intr = inl(io + SIS_GISR);
+ intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
+ SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
+ } while (intr);
+
+ return IRQ_HANDLED;
+}
+
+static u32 sis_rate_to_delta(unsigned int rate)
+{
+ u32 delta;
+
+ /* This was copied from the trident driver, but it seems its gotten
+ * around a bit... nevertheless, it works well.
+ *
+ * We special case 44100 and 8000 since rounding with the equation
+ * does not give us an accurate enough value. For 11025 and 22050
+ * the equation gives us the best answer. All other frequencies will
+ * also use the equation. JDW
+ */
+ if (rate == 44100)
+ delta = 0xeb3;
+ else if (rate == 8000)
+ delta = 0x2ab;
+ else if (rate == 48000)
+ delta = 0x1000;
+ else
+ delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
+ return delta;
+}
+
+static void __sis_map_silence(struct sis7019 *sis)
+{
+ /* Helper function: must hold sis->voice_lock on entry */
+ if (!sis->silence_users)
+ sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
+ sis->suspend_state[0],
+ 4096, DMA_TO_DEVICE);
+ sis->silence_users++;
+}
+
+static void __sis_unmap_silence(struct sis7019 *sis)
+{
+ /* Helper function: must hold sis->voice_lock on entry */
+ sis->silence_users--;
+ if (!sis->silence_users)
+ dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
+ DMA_TO_DEVICE);
+}
+
+static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&sis->voice_lock, flags);
+ if (voice->timing) {
+ __sis_unmap_silence(sis);
+ voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
+ VOICE_SYNC_TIMING);
+ voice->timing = NULL;
+ }
+ voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
+ spin_unlock_irqrestore(&sis->voice_lock, flags);
+}
+
+static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
+{
+ /* Must hold the voice_lock on entry */
+ struct voice *voice;
+ int i;
+
+ for (i = 0; i < 64; i++) {
+ voice = &sis->voices[i];
+ if (voice->flags & VOICE_IN_USE)
+ continue;
+ voice->flags |= VOICE_IN_USE;
+ goto found_one;
+ }
+ voice = NULL;
+
+found_one:
+ return voice;
+}
+
+static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
+{
+ struct voice *voice;
+ unsigned long flags;
+
+ spin_lock_irqsave(&sis->voice_lock, flags);
+ voice = __sis_alloc_playback_voice(sis);
+ spin_unlock_irqrestore(&sis->voice_lock, flags);
+
+ return voice;
+}
+
+static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
+ struct snd_pcm_hw_params *hw_params)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = runtime->private_data;
+ unsigned int period_size, buffer_size;
+ unsigned long flags;
+ int needed;
+
+ /* If there are one or two periods per buffer, we don't need a
+ * timing voice, as we can use the capture channel's interrupts
+ * to clock out the periods.
+ */
+ period_size = params_period_size(hw_params);
+ buffer_size = params_buffer_size(hw_params);
+ needed = (period_size != buffer_size &&
+ period_size != (buffer_size / 2));
+
+ if (needed && !voice->timing) {
+ spin_lock_irqsave(&sis->voice_lock, flags);
+ voice->timing = __sis_alloc_playback_voice(sis);
+ if (voice->timing)
+ __sis_map_silence(sis);
+ spin_unlock_irqrestore(&sis->voice_lock, flags);
+ if (!voice->timing)
+ return -ENOMEM;
+ voice->timing->substream = substream;
+ } else if (!needed && voice->timing) {
+ sis_free_voice(sis, voice);
+ voice->timing = NULL;
+ }
+
+ return 0;
+}
+
+static int sis_playback_open(struct snd_pcm_substream *substream)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice;
+
+ voice = sis_alloc_playback_voice(sis);
+ if (!voice)
+ return -EAGAIN;
+
+ voice->substream = substream;
+ runtime->private_data = voice;
+ runtime->hw = sis_playback_hw_info;
+ snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
+ 9, 0xfff9);
+ snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
+ 9, 0xfff9);
+ snd_pcm_set_sync(substream);
+ return 0;
+}
+
+static int sis_substream_close(struct snd_pcm_substream *substream)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = runtime->private_data;
+
+ sis_free_voice(sis, voice);
+ return 0;
+}
+
+static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = runtime->private_data;
+ void __iomem *ctrl_base = voice->ctrl_base;
+ void __iomem *wave_base = voice->wave_base;
+ u32 format, dma_addr, control, sso_eso, delta, reg;
+ u16 leo;
+
+ /* We rely on the PCM core to ensure that the parameters for this
+ * substream do not change on us while we're programming the HW.
+ */
+ format = 0;
+ if (snd_pcm_format_width(runtime->format) == 8)
+ format |= SIS_PLAY_DMA_FORMAT_8BIT;
+ if (!snd_pcm_format_signed(runtime->format))
+ format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
+ if (runtime->channels == 1)
+ format |= SIS_PLAY_DMA_FORMAT_MONO;
+
+ /* The baseline setup is for a single period per buffer, and
+ * we add bells and whistles as needed from there.
+ */
+ dma_addr = runtime->dma_addr;
+ leo = runtime->buffer_size - 1;
+ control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
+ sso_eso = leo;
+
+ if (runtime->period_size == (runtime->buffer_size / 2)) {
+ control |= SIS_PLAY_DMA_INTR_AT_MLP;
+ } else if (runtime->period_size != runtime->buffer_size) {
+ voice->flags |= VOICE_SSO_TIMING;
+ voice->sso = runtime->period_size - 1;
+ voice->period_size = runtime->period_size;
+ voice->buffer_size = runtime->buffer_size;
+
+ control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
+ control |= SIS_PLAY_DMA_INTR_AT_SSO;
+ sso_eso |= (runtime->period_size - 1) << 16;
+ }
+
+ delta = sis_rate_to_delta(runtime->rate);
+
+ /* Ok, we're ready to go, set up the channel.
+ */
+ writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
+ writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
+ writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
+ writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
+
+ for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
+ writel(0, wave_base + reg);
+
+ writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
+ writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
+ writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
+ SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
+ SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
+ wave_base + SIS_WAVE_CHANNEL_CONTROL);
+
+ /* Force PCI writes to post. */
+ readl(ctrl_base);
+
+ return 0;
+}
+
+static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ unsigned long io = sis->ioport;
+ struct snd_pcm_substream *s;
+ struct voice *voice;
+ void *chip;
+ int starting;
+ u32 record = 0;
+ u32 play[2] = { 0, 0 };
+
+ /* No locks needed, as the PCM core will hold the locks on the
+ * substreams, and the HW will only start/stop the indicated voices
+ * without changing the state of the others.
+ */
+ switch (cmd) {
+ case SNDRV_PCM_TRIGGER_START:
+ case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
+ case SNDRV_PCM_TRIGGER_RESUME:
+ starting = 1;
+ break;
+ case SNDRV_PCM_TRIGGER_STOP:
+ case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
+ case SNDRV_PCM_TRIGGER_SUSPEND:
+ starting = 0;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ snd_pcm_group_for_each_entry(s, substream) {
+ /* Make sure it is for us... */
+ chip = snd_pcm_substream_chip(s);
+ if (chip != sis)
+ continue;
+
+ voice = s->runtime->private_data;
+ if (voice->flags & VOICE_CAPTURE) {
+ record |= 1 << voice->num;
+ voice = voice->timing;
+ }
+
+ /* voice could be NULL if this a recording stream, and it
+ * doesn't have an external timing channel.
+ */
+ if (voice)
+ play[voice->num / 32] |= 1 << (voice->num & 0x1f);
+
+ snd_pcm_trigger_done(s, substream);
+ }
+
+ if (starting) {
+ if (record)
+ outl(record, io + SIS_RECORD_START_REG);
+ if (play[0])
+ outl(play[0], io + SIS_PLAY_START_A_REG);
+ if (play[1])
+ outl(play[1], io + SIS_PLAY_START_B_REG);
+ } else {
+ if (record)
+ outl(record, io + SIS_RECORD_STOP_REG);
+ if (play[0])
+ outl(play[0], io + SIS_PLAY_STOP_A_REG);
+ if (play[1])
+ outl(play[1], io + SIS_PLAY_STOP_B_REG);
+ }
+ return 0;
+}
+
+static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = runtime->private_data;
+ u32 cso;
+
+ cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
+ cso &= 0xffff;
+ return cso;
+}
+
+static int sis_capture_open(struct snd_pcm_substream *substream)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = &sis->capture_voice;
+ unsigned long flags;
+
+ /* FIXME: The driver only supports recording from one channel
+ * at the moment, but it could support more.
+ */
+ spin_lock_irqsave(&sis->voice_lock, flags);
+ if (voice->flags & VOICE_IN_USE)
+ voice = NULL;
+ else
+ voice->flags |= VOICE_IN_USE;
+ spin_unlock_irqrestore(&sis->voice_lock, flags);
+
+ if (!voice)
+ return -EAGAIN;
+
+ voice->substream = substream;
+ runtime->private_data = voice;
+ runtime->hw = sis_capture_hw_info;
+ runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
+ snd_pcm_limit_hw_rates(runtime);
+ snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
+ 9, 0xfff9);
+ snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
+ 9, 0xfff9);
+ snd_pcm_set_sync(substream);
+ return 0;
+}
+
+static int sis_capture_hw_params(struct snd_pcm_substream *substream,
+ struct snd_pcm_hw_params *hw_params)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ int rc;
+
+ rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
+ params_rate(hw_params));
+ if (rc)
+ goto out;
+
+ rc = sis_alloc_timing_voice(substream, hw_params);
+
+out:
+ return rc;
+}
+
+static void sis_prepare_timing_voice(struct voice *voice,
+ struct snd_pcm_substream *substream)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *timing = voice->timing;
+ void __iomem *play_base = timing->ctrl_base;
+ void __iomem *wave_base = timing->wave_base;
+ u16 buffer_size, period_size;
+ u32 format, control, sso_eso, delta;
+ u32 vperiod, sso, reg;
+
+ /* Set our initial buffer and period as large as we can given a
+ * single page of silence.
+ */
+ buffer_size = 4096 / runtime->channels;
+ buffer_size /= snd_pcm_format_size(runtime->format, 1);
+ period_size = buffer_size;
+
+ /* Initially, we want to interrupt just a bit behind the end of
+ * the period we're clocking out. 12 samples seems to give a good
+ * delay.
+ *
+ * We want to spread our interrupts throughout the virtual period,
+ * so that we don't end up with two interrupts back to back at the
+ * end -- this helps minimize the effects of any jitter. Adjust our
+ * clocking period size so that the last period is at least a fourth
+ * of a full period.
+ *
+ * This is all moot if we don't need to use virtual periods.
+ */
+ vperiod = runtime->period_size + 12;
+ if (vperiod > period_size) {
+ u16 tail = vperiod % period_size;
+ u16 quarter_period = period_size / 4;
+
+ if (tail && tail < quarter_period) {
+ u16 loops = vperiod / period_size;
+
+ tail = quarter_period - tail;
+ tail += loops - 1;
+ tail /= loops;
+ period_size -= tail;
+ }
+
+ sso = period_size - 1;
+ } else {
+ /* The initial period will fit inside the buffer, so we
+ * don't need to use virtual periods -- disable them.
+ */
+ period_size = runtime->period_size;
+ sso = vperiod - 1;
+ vperiod = 0;
+ }
+
+ /* The interrupt handler implements the timing synchronization, so
+ * setup its state.
+ */
+ timing->flags |= VOICE_SYNC_TIMING;
+ timing->sync_base = voice->ctrl_base;
+ timing->sync_cso = runtime->period_size;
+ timing->sync_period_size = runtime->period_size;
+ timing->sync_buffer_size = runtime->buffer_size;
+ timing->period_size = period_size;
+ timing->buffer_size = buffer_size;
+ timing->sso = sso;
+ timing->vperiod = vperiod;
+
+ /* Using unsigned samples with the all-zero silence buffer
+ * forces the output to the lower rail, killing playback.
+ * So ignore unsigned vs signed -- it doesn't change the timing.
+ */
+ format = 0;
+ if (snd_pcm_format_width(runtime->format) == 8)
+ format = SIS_CAPTURE_DMA_FORMAT_8BIT;
+ if (runtime->channels == 1)
+ format |= SIS_CAPTURE_DMA_FORMAT_MONO;
+
+ control = timing->buffer_size - 1;
+ control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
+ sso_eso = timing->buffer_size - 1;
+ sso_eso |= timing->sso << 16;
+
+ delta = sis_rate_to_delta(runtime->rate);
+
+ /* We've done the math, now configure the channel.
+ */
+ writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
+ writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
+ writel(control, play_base + SIS_PLAY_DMA_CONTROL);
+ writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
+
+ for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
+ writel(0, wave_base + reg);
+
+ writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
+ writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
+ writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
+ SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
+ SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
+ wave_base + SIS_WAVE_CHANNEL_CONTROL);
+}
+
+static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = runtime->private_data;
+ void __iomem *rec_base = voice->ctrl_base;
+ u32 format, dma_addr, control;
+ u16 leo;
+
+ /* We rely on the PCM core to ensure that the parameters for this
+ * substream do not change on us while we're programming the HW.
+ */
+ format = 0;
+ if (snd_pcm_format_width(runtime->format) == 8)
+ format = SIS_CAPTURE_DMA_FORMAT_8BIT;
+ if (!snd_pcm_format_signed(runtime->format))
+ format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
+ if (runtime->channels == 1)
+ format |= SIS_CAPTURE_DMA_FORMAT_MONO;
+
+ dma_addr = runtime->dma_addr;
+ leo = runtime->buffer_size - 1;
+ control = leo | SIS_CAPTURE_DMA_LOOP;
+
+ /* If we've got more than two periods per buffer, then we have
+ * use a timing voice to clock out the periods. Otherwise, we can
+ * use the capture channel's interrupts.
+ */
+ if (voice->timing) {
+ sis_prepare_timing_voice(voice, substream);
+ } else {
+ control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
+ if (runtime->period_size != runtime->buffer_size)
+ control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
+ }
+
+ writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
+ writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
+ writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
+
+ /* Force the writes to post. */
+ readl(rec_base);
+
+ return 0;
+}
+
+static const struct snd_pcm_ops sis_playback_ops = {
+ .open = sis_playback_open,
+ .close = sis_substream_close,
+ .prepare = sis_pcm_playback_prepare,
+ .trigger = sis_pcm_trigger,
+ .pointer = sis_pcm_pointer,
+};
+
+static const struct snd_pcm_ops sis_capture_ops = {
+ .open = sis_capture_open,
+ .close = sis_substream_close,
+ .hw_params = sis_capture_hw_params,
+ .prepare = sis_pcm_capture_prepare,
+ .trigger = sis_pcm_trigger,
+ .pointer = sis_pcm_pointer,
+};
+
+static int sis_pcm_create(struct sis7019 *sis)
+{
+ struct snd_pcm *pcm;
+ int rc;
+
+ /* We have 64 voices, and the driver currently records from
+ * only one channel, though that could change in the future.
+ */
+ rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
+ if (rc)
+ return rc;
+
+ pcm->private_data = sis;
+ strcpy(pcm->name, "SiS7019");
+ sis->pcm = pcm;
+
+ snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
+ snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
+
+ /* Try to preallocate some memory, but it's not the end of the
+ * world if this fails.
+ */
+ snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
+ &sis->pci->dev, 64*1024, 128*1024);
+
+ return 0;
+}
+
+static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
+{
+ unsigned long io = sis->ioport;
+ unsigned short val = 0xffff;
+ u16 status;
+ u16 rdy;
+ int count;
+ static const u16 codec_ready[3] = {
+ SIS_AC97_STATUS_CODEC_READY,
+ SIS_AC97_STATUS_CODEC2_READY,
+ SIS_AC97_STATUS_CODEC3_READY,
+ };
+
+ rdy = codec_ready[codec];
+
+
+ /* Get the AC97 semaphore -- software first, so we don't spin
+ * pounding out IO reads on the hardware semaphore...
+ */
+ mutex_lock(&sis->ac97_mutex);
+
+ count = 0xffff;
+ while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
+ udelay(1);
+
+ if (!count)
+ goto timeout;
+
+ /* ... and wait for any outstanding commands to complete ...
+ */
+ count = 0xffff;
+ do {
+ status = inw(io + SIS_AC97_STATUS);
+ if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
+ break;
+
+ udelay(1);
+ } while (--count);
+
+ if (!count)
+ goto timeout_sema;
+
+ /* ... before sending our command and waiting for it to finish ...
+ */
+ outl(cmd, io + SIS_AC97_CMD);
+ udelay(10);
+
+ count = 0xffff;
+ while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
+ udelay(1);
+
+ /* ... and reading the results (if any).
+ */
+ val = inl(io + SIS_AC97_CMD) >> 16;
+
+timeout_sema:
+ outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
+timeout:
+ mutex_unlock(&sis->ac97_mutex);
+
+ if (!count) {
+ dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
+ codec, cmd);
+ }
+
+ return val;
+}
+
+static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
+ unsigned short val)
+{
+ static const u32 cmd[3] = {
+ SIS_AC97_CMD_CODEC_WRITE,
+ SIS_AC97_CMD_CODEC2_WRITE,
+ SIS_AC97_CMD_CODEC3_WRITE,
+ };
+ sis_ac97_rw(ac97->private_data, ac97->num,
+ (val << 16) | (reg << 8) | cmd[ac97->num]);
+}
+
+static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
+{
+ static const u32 cmd[3] = {
+ SIS_AC97_CMD_CODEC_READ,
+ SIS_AC97_CMD_CODEC2_READ,
+ SIS_AC97_CMD_CODEC3_READ,
+ };
+ return sis_ac97_rw(ac97->private_data, ac97->num,
+ (reg << 8) | cmd[ac97->num]);
+}
+
+static int sis_mixer_create(struct sis7019 *sis)
+{
+ struct snd_ac97_bus *bus;
+ struct snd_ac97_template ac97;
+ static const struct snd_ac97_bus_ops ops = {
+ .write = sis_ac97_write,
+ .read = sis_ac97_read,
+ };
+ int rc;
+
+ memset(&ac97, 0, sizeof(ac97));
+ ac97.private_data = sis;
+
+ rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
+ if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
+ rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
+ ac97.num = 1;
+ if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
+ rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
+ ac97.num = 2;
+ if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
+ rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
+
+ /* If we return an error here, then snd_card_free() should
+ * free up any ac97 codecs that got created, as well as the bus.
+ */
+ return rc;
+}
+
+static void sis_chip_free(struct snd_card *card)
+{
+ struct sis7019 *sis = card->private_data;
+
+ /* Reset the chip, and disable all interrputs.
+ */
+ outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
+ udelay(25);
+ outl(0, sis->ioport + SIS_GCR);
+ outl(0, sis->ioport + SIS_GIER);
+
+ /* Now, free everything we allocated.
+ */
+ if (sis->irq >= 0)
+ free_irq(sis->irq, sis);
+}
+
+static int sis_chip_init(struct sis7019 *sis)
+{
+ unsigned long io = sis->ioport;
+ void __iomem *ioaddr = sis->ioaddr;
+ unsigned long timeout;
+ u16 status;
+ int count;
+ int i;
+
+ /* Reset the audio controller
+ */
+ outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
+ udelay(25);
+ outl(0, io + SIS_GCR);
+
+ /* Get the AC-link semaphore, and reset the codecs
+ */
+ count = 0xffff;
+ while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
+ udelay(1);
+
+ if (!count)
+ return -EIO;
+
+ outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
+ udelay(250);
+
+ count = 0xffff;
+ while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
+ udelay(1);
+
+ /* Command complete, we can let go of the semaphore now.
+ */
+ outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
+ if (!count)
+ return -EIO;
+
+ /* Now that we've finished the reset, find out what's attached.
+ * There are some codec/board combinations that take an extremely
+ * long time to come up. 350+ ms has been observed in the field,
+ * so we'll give them up to 500ms.
+ */
+ sis->codecs_present = 0;
+ timeout = msecs_to_jiffies(500) + jiffies;
+ while (time_before_eq(jiffies, timeout)) {
+ status = inl(io + SIS_AC97_STATUS);
+ if (status & SIS_AC97_STATUS_CODEC_READY)
+ sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
+ if (status & SIS_AC97_STATUS_CODEC2_READY)
+ sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
+ if (status & SIS_AC97_STATUS_CODEC3_READY)
+ sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
+
+ if (sis->codecs_present == codecs)
+ break;
+
+ msleep(1);
+ }
+
+ /* All done, check for errors.
+ */
+ if (!sis->codecs_present) {
+ dev_err(&sis->pci->dev, "could not find any codecs\n");
+ return -EIO;
+ }
+
+ if (sis->codecs_present != codecs) {
+ dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
+ sis->codecs_present, codecs);
+ }
+
+ /* Let the hardware know that the audio driver is alive,
+ * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
+ * record channels. We're going to want to use Variable Rate Audio
+ * for recording, to avoid needlessly resampling from 48kHZ.
+ */
+ outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
+ outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
+ SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
+ SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
+ SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
+
+ /* All AC97 PCM slots should be sourced from sub-mixer 0.
+ */
+ outl(0, io + SIS_AC97_PSR);
+
+ /* There is only one valid DMA setup for a PCI environment.
+ */
+ outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
+
+ /* Reset the synchronization groups for all of the channels
+ * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
+ * we'll need to change how we handle these. Until then, we just
+ * assign sub-mixer 0 to all playback channels, and avoid any
+ * attenuation on the audio.
+ */
+ outl(0, io + SIS_PLAY_SYNC_GROUP_A);
+ outl(0, io + SIS_PLAY_SYNC_GROUP_B);
+ outl(0, io + SIS_PLAY_SYNC_GROUP_C);
+ outl(0, io + SIS_PLAY_SYNC_GROUP_D);
+ outl(0, io + SIS_MIXER_SYNC_GROUP);
+
+ for (i = 0; i < 64; i++) {
+ writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
+ writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
+ SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
+ }
+
+ /* Don't attenuate any audio set for the wave amplifier.
+ *
+ * FIXME: Maximum attenuation is set for the music amp, which will
+ * need to change if we start using the synth engine.
+ */
+ outl(0xffff0000, io + SIS_WEVCR);
+
+ /* Ensure that the wave engine is in normal operating mode.
+ */
+ outl(0, io + SIS_WECCR);
+
+ /* Go ahead and enable the DMA interrupts. They won't go live
+ * until we start a channel.
+ */
+ outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
+ SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int sis_suspend(struct device *dev)
+{
+ struct snd_card *card = dev_get_drvdata(dev);
+ struct sis7019 *sis = card->private_data;
+ void __iomem *ioaddr = sis->ioaddr;
+ int i;
+
+ snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
+ if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
+ snd_ac97_suspend(sis->ac97[0]);
+ if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
+ snd_ac97_suspend(sis->ac97[1]);
+ if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
+ snd_ac97_suspend(sis->ac97[2]);
+
+ /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
+ */
+ if (sis->irq >= 0) {
+ free_irq(sis->irq, sis);
+ sis->irq = -1;
+ }
+
+ /* Save the internal state away
+ */
+ for (i = 0; i < 4; i++) {
+ memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
+ ioaddr += 4096;
+ }
+
+ return 0;
+}
+
+static int sis_resume(struct device *dev)
+{
+ struct pci_dev *pci = to_pci_dev(dev);
+ struct snd_card *card = dev_get_drvdata(dev);
+ struct sis7019 *sis = card->private_data;
+ void __iomem *ioaddr = sis->ioaddr;
+ int i;
+
+ if (sis_chip_init(sis)) {
+ dev_err(&pci->dev, "unable to re-init controller\n");
+ goto error;
+ }
+
+ if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
+ KBUILD_MODNAME, sis)) {
+ dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
+ goto error;
+ }
+
+ /* Restore saved state, then clear out the page we use for the
+ * silence buffer.
+ */
+ for (i = 0; i < 4; i++) {
+ memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
+ ioaddr += 4096;
+ }
+
+ memset(sis->suspend_state[0], 0, 4096);
+
+ sis->irq = pci->irq;
+
+ if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
+ snd_ac97_resume(sis->ac97[0]);
+ if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
+ snd_ac97_resume(sis->ac97[1]);
+ if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
+ snd_ac97_resume(sis->ac97[2]);
+
+ snd_power_change_state(card, SNDRV_CTL_POWER_D0);
+ return 0;
+
+error:
+ snd_card_disconnect(card);
+ return -EIO;
+}
+
+static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
+#define SIS_PM_OPS &sis_pm
+#else
+#define SIS_PM_OPS NULL
+#endif /* CONFIG_PM_SLEEP */
+
+static int sis_alloc_suspend(struct sis7019 *sis)
+{
+ int i;
+
+ /* We need 16K to store the internal wave engine state during a
+ * suspend, but we don't need it to be contiguous, so play nice
+ * with the memory system. We'll also use this area for a silence
+ * buffer.
+ */
+ for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
+ sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096,
+ GFP_KERNEL);
+ if (!sis->suspend_state[i])
+ return -ENOMEM;
+ }
+ memset(sis->suspend_state[0], 0, 4096);
+
+ return 0;
+}
+
+static int sis_chip_create(struct snd_card *card,
+ struct pci_dev *pci)
+{
+ struct sis7019 *sis = card->private_data;
+ struct voice *voice;
+ int rc;
+ int i;
+
+ rc = pcim_enable_device(pci);
+ if (rc)
+ return rc;
+
+ rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
+ if (rc < 0) {
+ dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
+ return -ENXIO;
+ }
+
+ mutex_init(&sis->ac97_mutex);
+ spin_lock_init(&sis->voice_lock);
+ sis->card = card;
+ sis->pci = pci;
+ sis->irq = -1;
+ sis->ioport = pci_resource_start(pci, 0);
+
+ rc = pci_request_regions(pci, "SiS7019");
+ if (rc) {
+ dev_err(&pci->dev, "unable request regions\n");
+ return rc;
+ }
+
+ sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000);
+ if (!sis->ioaddr) {
+ dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
+ return -EIO;
+ }
+
+ rc = sis_alloc_suspend(sis);
+ if (rc < 0) {
+ dev_err(&pci->dev, "unable to allocate state storage\n");
+ return rc;
+ }
+
+ rc = sis_chip_init(sis);
+ if (rc)
+ return rc;
+ card->private_free = sis_chip_free;
+
+ rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
+ sis);
+ if (rc) {
+ dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
+ return rc;
+ }
+
+ sis->irq = pci->irq;
+ card->sync_irq = sis->irq;
+ pci_set_master(pci);
+
+ for (i = 0; i < 64; i++) {
+ voice = &sis->voices[i];
+ voice->num = i;
+ voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
+ voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
+ }
+
+ voice = &sis->capture_voice;
+ voice->flags = VOICE_CAPTURE;
+ voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
+ voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
+
+ return 0;
+}
+
+static int __snd_sis7019_probe(struct pci_dev *pci,
+ const struct pci_device_id *pci_id)
+{
+ struct snd_card *card;
+ struct sis7019 *sis;
+ int rc;
+
+ if (!enable)
+ return -ENOENT;
+
+ /* The user can specify which codecs should be present so that we
+ * can wait for them to show up if they are slow to recover from
+ * the AC97 cold reset. We default to a single codec, the primary.
+ *
+ * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
+ */
+ codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
+ SIS_TERTIARY_CODEC_PRESENT;
+ if (!codecs)
+ codecs = SIS_PRIMARY_CODEC_PRESENT;
+
+ rc = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE,
+ sizeof(*sis), &card);
+ if (rc < 0)
+ return rc;
+
+ strcpy(card->driver, "SiS7019");
+ strcpy(card->shortname, "SiS7019");
+ rc = sis_chip_create(card, pci);
+ if (rc)
+ return rc;
+
+ sis = card->private_data;
+
+ rc = sis_mixer_create(sis);
+ if (rc)
+ return rc;
+
+ rc = sis_pcm_create(sis);
+ if (rc)
+ return rc;
+
+ snprintf(card->longname, sizeof(card->longname),
+ "%s Audio Accelerator with %s at 0x%lx, irq %d",
+ card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
+ sis->ioport, sis->irq);
+
+ rc = snd_card_register(card);
+ if (rc)
+ return rc;
+
+ pci_set_drvdata(pci, card);
+ return 0;
+}
+
+static int snd_sis7019_probe(struct pci_dev *pci,
+ const struct pci_device_id *pci_id)
+{
+ return snd_card_free_on_error(&pci->dev, __snd_sis7019_probe(pci, pci_id));
+}
+
+static struct pci_driver sis7019_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = snd_sis7019_ids,
+ .probe = snd_sis7019_probe,
+ .driver = {
+ .pm = SIS_PM_OPS,
+ },
+};
+
+module_pci_driver(sis7019_driver);