diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /tools/perf/Documentation/perf-list.txt | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'tools/perf/Documentation/perf-list.txt')
-rw-r--r-- | tools/perf/Documentation/perf-list.txt | 361 |
1 files changed, 361 insertions, 0 deletions
diff --git a/tools/perf/Documentation/perf-list.txt b/tools/perf/Documentation/perf-list.txt new file mode 100644 index 000000000..c5a3cb0f5 --- /dev/null +++ b/tools/perf/Documentation/perf-list.txt @@ -0,0 +1,361 @@ +perf-list(1) +============ + +NAME +---- +perf-list - List all symbolic event types + +SYNOPSIS +-------- +[verse] +'perf list' [--no-desc] [--long-desc] + [hw|sw|cache|tracepoint|pmu|sdt|metric|metricgroup|event_glob] + +DESCRIPTION +----------- +This command displays the symbolic event types which can be selected in the +various perf commands with the -e option. + +OPTIONS +------- +-d:: +--desc:: +Print extra event descriptions. (default) + +--no-desc:: +Don't print descriptions. + +-v:: +--long-desc:: +Print longer event descriptions. + +--debug:: +Enable debugging output. + +--details:: +Print how named events are resolved internally into perf events, and also +any extra expressions computed by perf stat. + +--deprecated:: +Print deprecated events. By default the deprecated events are hidden. + +--unit:: +Print PMU events and metrics limited to the specific PMU name. +(e.g. --unit cpu, --unit msr, --unit cpu_core, --unit cpu_atom) + +-j:: +--json:: +Output in JSON format. + +[[EVENT_MODIFIERS]] +EVENT MODIFIERS +--------------- + +Events can optionally have a modifier by appending a colon and one or +more modifiers. Modifiers allow the user to restrict the events to be +counted. The following modifiers exist: + + u - user-space counting + k - kernel counting + h - hypervisor counting + I - non idle counting + G - guest counting (in KVM guests) + H - host counting (not in KVM guests) + p - precise level + P - use maximum detected precise level + S - read sample value (PERF_SAMPLE_READ) + D - pin the event to the PMU + W - group is weak and will fallback to non-group if not schedulable, + e - group or event are exclusive and do not share the PMU + +The 'p' modifier can be used for specifying how precise the instruction +address should be. The 'p' modifier can be specified multiple times: + + 0 - SAMPLE_IP can have arbitrary skid + 1 - SAMPLE_IP must have constant skid + 2 - SAMPLE_IP requested to have 0 skid + 3 - SAMPLE_IP must have 0 skid, or uses randomization to avoid + sample shadowing effects. + +For Intel systems precise event sampling is implemented with PEBS +which supports up to precise-level 2, and precise level 3 for +some special cases + +On AMD systems it is implemented using IBS (up to precise-level 2). +The precise modifier works with event types 0x76 (cpu-cycles, CPU +clocks not halted) and 0xC1 (micro-ops retired). Both events map to +IBS execution sampling (IBS op) with the IBS Op Counter Control bit +(IbsOpCntCtl) set respectively (see the +Core Complex (CCX) -> Processor x86 Core -> Instruction Based Sampling (IBS) +section of the [AMD Processor Programming Reference (PPR)] relevant to the +family, model and stepping of the processor being used). + +Manual Volume 2: System Programming, 13.3 Instruction-Based +Sampling). Examples to use IBS: + + perf record -a -e cpu-cycles:p ... # use ibs op counting cycles + perf record -a -e r076:p ... # same as -e cpu-cycles:p + perf record -a -e r0C1:p ... # use ibs op counting micro-ops + +RAW HARDWARE EVENT DESCRIPTOR +----------------------------- +Even when an event is not available in a symbolic form within perf right now, +it can be encoded in a per processor specific way. + +For instance on x86 CPUs, N is a hexadecimal value that represents the raw register encoding with the +layout of IA32_PERFEVTSELx MSRs (see [IntelĀ® 64 and IA-32 Architectures Software Developer's Manual Volume 3B: System Programming Guide] Figure 30-1 Layout +of IA32_PERFEVTSELx MSRs) or AMD's PERF_CTL MSRs (see the +Core Complex (CCX) -> Processor x86 Core -> MSR Registers section of the +[AMD Processor Programming Reference (PPR)] relevant to the family, model +and stepping of the processor being used). + +Note: Only the following bit fields can be set in x86 counter +registers: event, umask, edge, inv, cmask. Esp. guest/host only and +OS/user mode flags must be setup using <<EVENT_MODIFIERS, EVENT +MODIFIERS>>. + +Example: + +If the Intel docs for a QM720 Core i7 describe an event as: + + Event Umask Event Mask + Num. Value Mnemonic Description Comment + + A8H 01H LSD.UOPS Counts the number of micro-ops Use cmask=1 and + delivered by loop stream detector invert to count + cycles + +raw encoding of 0x1A8 can be used: + + perf stat -e r1a8 -a sleep 1 + perf record -e r1a8 ... + +It's also possible to use pmu syntax: + + perf record -e r1a8 -a sleep 1 + perf record -e cpu/r1a8/ ... + perf record -e cpu/r0x1a8/ ... + +Some processors, like those from AMD, support event codes and unit masks +larger than a byte. In such cases, the bits corresponding to the event +configuration parameters can be seen with: + + cat /sys/bus/event_source/devices/<pmu>/format/<config> + +Example: + +If the AMD docs for an EPYC 7713 processor describe an event as: + + Event Umask Event Mask + Num. Value Mnemonic Description + + 28FH 03H op_cache_hit_miss.op_cache_hit Counts Op Cache micro-tag + hit events. + +raw encoding of 0x0328F cannot be used since the upper nibble of the +EventSelect bits have to be specified via bits 32-35 as can be seen with: + + cat /sys/bus/event_source/devices/cpu/format/event + +raw encoding of 0x20000038F should be used instead: + + perf stat -e r20000038f -a sleep 1 + perf record -e r20000038f ... + +It's also possible to use pmu syntax: + + perf record -e r20000038f -a sleep 1 + perf record -e cpu/r20000038f/ ... + perf record -e cpu/r0x20000038f/ ... + +You should refer to the processor specific documentation for getting these +details. Some of them are referenced in the SEE ALSO section below. + +ARBITRARY PMUS +-------------- + +perf also supports an extended syntax for specifying raw parameters +to PMUs. Using this typically requires looking up the specific event +in the CPU vendor specific documentation. + +The available PMUs and their raw parameters can be listed with + + ls /sys/devices/*/format + +For example the raw event "LSD.UOPS" core pmu event above could +be specified as + + perf stat -e cpu/event=0xa8,umask=0x1,name=LSD.UOPS_CYCLES,cmask=0x1/ ... + + or using extended name syntax + + perf stat -e cpu/event=0xa8,umask=0x1,cmask=0x1,name=\'LSD.UOPS_CYCLES:cmask=0x1\'/ ... + +PER SOCKET PMUS +--------------- + +Some PMUs are not associated with a core, but with a whole CPU socket. +Events on these PMUs generally cannot be sampled, but only counted globally +with perf stat -a. They can be bound to one logical CPU, but will measure +all the CPUs in the same socket. + +This example measures memory bandwidth every second +on the first memory controller on socket 0 of a Intel Xeon system + + perf stat -C 0 -a uncore_imc_0/cas_count_read/,uncore_imc_0/cas_count_write/ -I 1000 ... + +Each memory controller has its own PMU. Measuring the complete system +bandwidth would require specifying all imc PMUs (see perf list output), +and adding the values together. To simplify creation of multiple events, +prefix and glob matching is supported in the PMU name, and the prefix +'uncore_' is also ignored when performing the match. So the command above +can be expanded to all memory controllers by using the syntaxes: + + perf stat -C 0 -a imc/cas_count_read/,imc/cas_count_write/ -I 1000 ... + perf stat -C 0 -a *imc*/cas_count_read/,*imc*/cas_count_write/ -I 1000 ... + +This example measures the combined core power every second + + perf stat -I 1000 -e power/energy-cores/ -a + +ACCESS RESTRICTIONS +------------------- + +For non root users generally only context switched PMU events are available. +This is normally only the events in the cpu PMU, the predefined events +like cycles and instructions and some software events. + +Other PMUs and global measurements are normally root only. +Some event qualifiers, such as "any", are also root only. + +This can be overridden by setting the kernel.perf_event_paranoid +sysctl to -1, which allows non root to use these events. + +For accessing trace point events perf needs to have read access to +/sys/kernel/debug/tracing, even when perf_event_paranoid is in a relaxed +setting. + +TRACING +------- + +Some PMUs control advanced hardware tracing capabilities, such as Intel PT, +that allows low overhead execution tracing. These are described in a separate +intel-pt.txt document. + +PARAMETERIZED EVENTS +-------------------- + +Some pmu events listed by 'perf-list' will be displayed with '?' in them. For +example: + + hv_gpci/dtbp_ptitc,phys_processor_idx=?/ + +This means that when provided as an event, a value for '?' must +also be supplied. For example: + + perf stat -C 0 -e 'hv_gpci/dtbp_ptitc,phys_processor_idx=0x2/' ... + +EVENT QUALIFIERS: + +It is also possible to add extra qualifiers to an event: + +percore: + +Sums up the event counts for all hardware threads in a core, e.g.: + + + perf stat -e cpu/event=0,umask=0x3,percore=1/ + + +EVENT GROUPS +------------ + +Perf supports time based multiplexing of events, when the number of events +active exceeds the number of hardware performance counters. Multiplexing +can cause measurement errors when the workload changes its execution +profile. + +When metrics are computed using formulas from event counts, it is useful to +ensure some events are always measured together as a group to minimize multiplexing +errors. Event groups can be specified using { }. + + perf stat -e '{instructions,cycles}' ... + +The number of available performance counters depend on the CPU. A group +cannot contain more events than available counters. +For example Intel Core CPUs typically have four generic performance counters +for the core, plus three fixed counters for instructions, cycles and +ref-cycles. Some special events have restrictions on which counter they +can schedule, and may not support multiple instances in a single group. +When too many events are specified in the group some of them will not +be measured. + +Globally pinned events can limit the number of counters available for +other groups. On x86 systems, the NMI watchdog pins a counter by default. +The nmi watchdog can be disabled as root with + + echo 0 > /proc/sys/kernel/nmi_watchdog + +Events from multiple different PMUs cannot be mixed in a group, with +some exceptions for software events. + +LEADER SAMPLING +--------------- + +perf also supports group leader sampling using the :S specifier. + + perf record -e '{cycles,instructions}:S' ... + perf report --group + +Normally all events in an event group sample, but with :S only +the first event (the leader) samples, and it only reads the values of the +other events in the group. + +However, in the case AUX area events (e.g. Intel PT or CoreSight), the AUX +area event must be the leader, so then the second event samples, not the first. + +OPTIONS +------- + +Without options all known events will be listed. + +To limit the list use: + +. 'hw' or 'hardware' to list hardware events such as cache-misses, etc. + +. 'sw' or 'software' to list software events such as context switches, etc. + +. 'cache' or 'hwcache' to list hardware cache events such as L1-dcache-loads, etc. + +. 'tracepoint' to list all tracepoint events, alternatively use + 'subsys_glob:event_glob' to filter by tracepoint subsystems such as sched, + block, etc. + +. 'pmu' to print the kernel supplied PMU events. + +. 'sdt' to list all Statically Defined Tracepoint events. + +. 'metric' to list metrics + +. 'metricgroup' to list metricgroups with metrics. + +. If none of the above is matched, it will apply the supplied glob to all + events, printing the ones that match. + +. As a last resort, it will do a substring search in all event names. + +One or more types can be used at the same time, listing the events for the +types specified. + +Support raw format: + +. '--raw-dump', shows the raw-dump of all the events. +. '--raw-dump [hw|sw|cache|tracepoint|pmu|event_glob]', shows the raw-dump of + a certain kind of events. + +SEE ALSO +-------- +linkperf:perf-stat[1], linkperf:perf-top[1], +linkperf:perf-record[1], +http://www.intel.com/sdm/[IntelĀ® 64 and IA-32 Architectures Software Developer's Manual Volume 3B: System Programming Guide], +https://bugzilla.kernel.org/show_bug.cgi?id=206537[AMD Processor Programming Reference (PPR)] |