aboutsummaryrefslogtreecommitdiff
path: root/arch/powerpc/kernel/irq_64.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /arch/powerpc/kernel/irq_64.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'arch/powerpc/kernel/irq_64.c')
-rw-r--r--arch/powerpc/kernel/irq_64.c495
1 files changed, 495 insertions, 0 deletions
diff --git a/arch/powerpc/kernel/irq_64.c b/arch/powerpc/kernel/irq_64.c
new file mode 100644
index 000000000..eb2b380e5
--- /dev/null
+++ b/arch/powerpc/kernel/irq_64.c
@@ -0,0 +1,495 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Derived from arch/i386/kernel/irq.c
+ * Copyright (C) 1992 Linus Torvalds
+ * Adapted from arch/i386 by Gary Thomas
+ * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
+ * Updated and modified by Cort Dougan <cort@fsmlabs.com>
+ * Copyright (C) 1996-2001 Cort Dougan
+ * Adapted for Power Macintosh by Paul Mackerras
+ * Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
+ *
+ * This file contains the code used by various IRQ handling routines:
+ * asking for different IRQ's should be done through these routines
+ * instead of just grabbing them. Thus setups with different IRQ numbers
+ * shouldn't result in any weird surprises, and installing new handlers
+ * should be easier.
+ */
+
+#undef DEBUG
+
+#include <linux/export.h>
+#include <linux/threads.h>
+#include <linux/kernel_stat.h>
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/ptrace.h>
+#include <linux/ioport.h>
+#include <linux/interrupt.h>
+#include <linux/timex.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/irq.h>
+#include <linux/seq_file.h>
+#include <linux/cpumask.h>
+#include <linux/profile.h>
+#include <linux/bitops.h>
+#include <linux/list.h>
+#include <linux/radix-tree.h>
+#include <linux/mutex.h>
+#include <linux/pci.h>
+#include <linux/debugfs.h>
+#include <linux/of.h>
+#include <linux/of_irq.h>
+#include <linux/vmalloc.h>
+#include <linux/pgtable.h>
+#include <linux/static_call.h>
+
+#include <linux/uaccess.h>
+#include <asm/interrupt.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <asm/cache.h>
+#include <asm/ptrace.h>
+#include <asm/machdep.h>
+#include <asm/udbg.h>
+#include <asm/smp.h>
+#include <asm/hw_irq.h>
+#include <asm/softirq_stack.h>
+#include <asm/ppc_asm.h>
+
+#include <asm/paca.h>
+#include <asm/firmware.h>
+#include <asm/lv1call.h>
+#include <asm/dbell.h>
+#include <asm/trace.h>
+#include <asm/cpu_has_feature.h>
+
+int distribute_irqs = 1;
+
+static inline void next_interrupt(struct pt_regs *regs)
+{
+ /*
+ * Softirq processing can enable/disable irqs, which will leave
+ * MSR[EE] enabled and the soft mask set to IRQS_DISABLED. Fix
+ * this up.
+ */
+ if (!(local_paca->irq_happened & PACA_IRQ_HARD_DIS))
+ hard_irq_disable();
+ else
+ irq_soft_mask_set(IRQS_ALL_DISABLED);
+
+ /*
+ * We are responding to the next interrupt, so interrupt-off
+ * latencies should be reset here.
+ */
+ trace_hardirqs_on();
+ trace_hardirqs_off();
+}
+
+static inline bool irq_happened_test_and_clear(u8 irq)
+{
+ if (local_paca->irq_happened & irq) {
+ local_paca->irq_happened &= ~irq;
+ return true;
+ }
+ return false;
+}
+
+void replay_soft_interrupts(void)
+{
+ struct pt_regs regs;
+
+ /*
+ * Be careful here, calling these interrupt handlers can cause
+ * softirqs to be raised, which they may run when calling irq_exit,
+ * which will cause local_irq_enable() to be run, which can then
+ * recurse into this function. Don't keep any state across
+ * interrupt handler calls which may change underneath us.
+ *
+ * Softirqs can not be disabled over replay to stop this recursion
+ * because interrupts taken in idle code may require RCU softirq
+ * to run in the irq RCU tracking context. This is a hard problem
+ * to fix without changes to the softirq or idle layer.
+ *
+ * We use local_paca rather than get_paca() to avoid all the
+ * debug_smp_processor_id() business in this low level function.
+ */
+
+ if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG)) {
+ WARN_ON_ONCE(mfmsr() & MSR_EE);
+ WARN_ON(!(local_paca->irq_happened & PACA_IRQ_HARD_DIS));
+ }
+
+ ppc_save_regs(&regs);
+ regs.softe = IRQS_ENABLED;
+ regs.msr |= MSR_EE;
+
+again:
+ /*
+ * Force the delivery of pending soft-disabled interrupts on PS3.
+ * Any HV call will have this side effect.
+ */
+ if (firmware_has_feature(FW_FEATURE_PS3_LV1)) {
+ u64 tmp, tmp2;
+ lv1_get_version_info(&tmp, &tmp2);
+ }
+
+ /*
+ * Check if an hypervisor Maintenance interrupt happened.
+ * This is a higher priority interrupt than the others, so
+ * replay it first.
+ */
+ if (IS_ENABLED(CONFIG_PPC_BOOK3S) &&
+ irq_happened_test_and_clear(PACA_IRQ_HMI)) {
+ regs.trap = INTERRUPT_HMI;
+ handle_hmi_exception(&regs);
+ next_interrupt(&regs);
+ }
+
+ if (irq_happened_test_and_clear(PACA_IRQ_DEC)) {
+ regs.trap = INTERRUPT_DECREMENTER;
+ timer_interrupt(&regs);
+ next_interrupt(&regs);
+ }
+
+ if (irq_happened_test_and_clear(PACA_IRQ_EE)) {
+ regs.trap = INTERRUPT_EXTERNAL;
+ do_IRQ(&regs);
+ next_interrupt(&regs);
+ }
+
+ if (IS_ENABLED(CONFIG_PPC_DOORBELL) &&
+ irq_happened_test_and_clear(PACA_IRQ_DBELL)) {
+ regs.trap = INTERRUPT_DOORBELL;
+ doorbell_exception(&regs);
+ next_interrupt(&regs);
+ }
+
+ /* Book3E does not support soft-masking PMI interrupts */
+ if (IS_ENABLED(CONFIG_PPC_BOOK3S) &&
+ irq_happened_test_and_clear(PACA_IRQ_PMI)) {
+ regs.trap = INTERRUPT_PERFMON;
+ performance_monitor_exception(&regs);
+ next_interrupt(&regs);
+ }
+
+ /*
+ * Softirq processing can enable and disable interrupts, which can
+ * result in new irqs becoming pending. Must keep looping until we
+ * have cleared out all pending interrupts.
+ */
+ if (local_paca->irq_happened & ~PACA_IRQ_HARD_DIS)
+ goto again;
+}
+
+#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_KUAP)
+static inline void replay_soft_interrupts_irqrestore(void)
+{
+ unsigned long kuap_state = get_kuap();
+
+ /*
+ * Check if anything calls local_irq_enable/restore() when KUAP is
+ * disabled (user access enabled). We handle that case here by saving
+ * and re-locking AMR but we shouldn't get here in the first place,
+ * hence the warning.
+ */
+ kuap_assert_locked();
+
+ if (kuap_state != AMR_KUAP_BLOCKED)
+ set_kuap(AMR_KUAP_BLOCKED);
+
+ replay_soft_interrupts();
+
+ if (kuap_state != AMR_KUAP_BLOCKED)
+ set_kuap(kuap_state);
+}
+#else
+#define replay_soft_interrupts_irqrestore() replay_soft_interrupts()
+#endif
+
+notrace void arch_local_irq_restore(unsigned long mask)
+{
+ unsigned char irq_happened;
+
+ /* Write the new soft-enabled value if it is a disable */
+ if (mask) {
+ irq_soft_mask_set(mask);
+ return;
+ }
+
+ if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
+ WARN_ON_ONCE(in_nmi() || in_hardirq());
+
+ /*
+ * After the stb, interrupts are unmasked and there are no interrupts
+ * pending replay. The restart sequence makes this atomic with
+ * respect to soft-masked interrupts. If this was just a simple code
+ * sequence, a soft-masked interrupt could become pending right after
+ * the comparison and before the stb.
+ *
+ * This allows interrupts to be unmasked without hard disabling, and
+ * also without new hard interrupts coming in ahead of pending ones.
+ */
+ asm_volatile_goto(
+"1: \n"
+" lbz 9,%0(13) \n"
+" cmpwi 9,0 \n"
+" bne %l[happened] \n"
+" stb 9,%1(13) \n"
+"2: \n"
+ RESTART_TABLE(1b, 2b, 1b)
+ : : "i" (offsetof(struct paca_struct, irq_happened)),
+ "i" (offsetof(struct paca_struct, irq_soft_mask))
+ : "cr0", "r9"
+ : happened);
+
+ if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
+ WARN_ON_ONCE(!(mfmsr() & MSR_EE));
+
+ return;
+
+happened:
+ irq_happened = READ_ONCE(local_paca->irq_happened);
+ if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
+ WARN_ON_ONCE(!irq_happened);
+
+ if (irq_happened == PACA_IRQ_HARD_DIS) {
+ if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
+ WARN_ON_ONCE(mfmsr() & MSR_EE);
+ irq_soft_mask_set(IRQS_ENABLED);
+ local_paca->irq_happened = 0;
+ __hard_irq_enable();
+ return;
+ }
+
+ /* Have interrupts to replay, need to hard disable first */
+ if (!(irq_happened & PACA_IRQ_HARD_DIS)) {
+ if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG)) {
+ if (!(mfmsr() & MSR_EE)) {
+ /*
+ * An interrupt could have come in and cleared
+ * MSR[EE] and set IRQ_HARD_DIS, so check
+ * IRQ_HARD_DIS again and warn if it is still
+ * clear.
+ */
+ irq_happened = READ_ONCE(local_paca->irq_happened);
+ WARN_ON_ONCE(!(irq_happened & PACA_IRQ_HARD_DIS));
+ }
+ }
+ __hard_irq_disable();
+ local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
+ } else {
+ if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG)) {
+ if (WARN_ON_ONCE(mfmsr() & MSR_EE))
+ __hard_irq_disable();
+ }
+ }
+
+ /*
+ * Disable preempt here, so that the below preempt_enable will
+ * perform resched if required (a replayed interrupt may set
+ * need_resched).
+ */
+ preempt_disable();
+ irq_soft_mask_set(IRQS_ALL_DISABLED);
+ trace_hardirqs_off();
+
+ replay_soft_interrupts_irqrestore();
+
+ trace_hardirqs_on();
+ irq_soft_mask_set(IRQS_ENABLED);
+ if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
+ WARN_ON(local_paca->irq_happened != PACA_IRQ_HARD_DIS);
+ local_paca->irq_happened = 0;
+ __hard_irq_enable();
+ preempt_enable();
+}
+EXPORT_SYMBOL(arch_local_irq_restore);
+
+/*
+ * This is a helper to use when about to go into idle low-power
+ * when the latter has the side effect of re-enabling interrupts
+ * (such as calling H_CEDE under pHyp).
+ *
+ * You call this function with interrupts soft-disabled (this is
+ * already the case when ppc_md.power_save is called). The function
+ * will return whether to enter power save or just return.
+ *
+ * In the former case, it will have notified lockdep of interrupts
+ * being re-enabled and generally sanitized the lazy irq state,
+ * and in the latter case it will leave with interrupts hard
+ * disabled and marked as such, so the local_irq_enable() call
+ * in arch_cpu_idle() will properly re-enable everything.
+ */
+bool prep_irq_for_idle(void)
+{
+ /*
+ * First we need to hard disable to ensure no interrupt
+ * occurs before we effectively enter the low power state
+ */
+ __hard_irq_disable();
+ local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
+
+ /*
+ * If anything happened while we were soft-disabled,
+ * we return now and do not enter the low power state.
+ */
+ if (lazy_irq_pending())
+ return false;
+
+ /* Tell lockdep we are about to re-enable */
+ trace_hardirqs_on();
+
+ /*
+ * Mark interrupts as soft-enabled and clear the
+ * PACA_IRQ_HARD_DIS from the pending mask since we
+ * are about to hard enable as well as a side effect
+ * of entering the low power state.
+ */
+ local_paca->irq_happened &= ~PACA_IRQ_HARD_DIS;
+ irq_soft_mask_set(IRQS_ENABLED);
+
+ /* Tell the caller to enter the low power state */
+ return true;
+}
+
+#ifdef CONFIG_PPC_BOOK3S
+/*
+ * This is for idle sequences that return with IRQs off, but the
+ * idle state itself wakes on interrupt. Tell the irq tracer that
+ * IRQs are enabled for the duration of idle so it does not get long
+ * off times. Must be paired with fini_irq_for_idle_irqsoff.
+ */
+bool prep_irq_for_idle_irqsoff(void)
+{
+ WARN_ON(!irqs_disabled());
+
+ /*
+ * First we need to hard disable to ensure no interrupt
+ * occurs before we effectively enter the low power state
+ */
+ __hard_irq_disable();
+ local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
+
+ /*
+ * If anything happened while we were soft-disabled,
+ * we return now and do not enter the low power state.
+ */
+ if (lazy_irq_pending())
+ return false;
+
+ /* Tell lockdep we are about to re-enable */
+ trace_hardirqs_on();
+
+ return true;
+}
+
+/*
+ * Take the SRR1 wakeup reason, index into this table to find the
+ * appropriate irq_happened bit.
+ *
+ * Sytem reset exceptions taken in idle state also come through here,
+ * but they are NMI interrupts so do not need to wait for IRQs to be
+ * restored, and should be taken as early as practical. These are marked
+ * with 0xff in the table. The Power ISA specifies 0100b as the system
+ * reset interrupt reason.
+ */
+#define IRQ_SYSTEM_RESET 0xff
+
+static const u8 srr1_to_lazyirq[0x10] = {
+ 0, 0, 0,
+ PACA_IRQ_DBELL,
+ IRQ_SYSTEM_RESET,
+ PACA_IRQ_DBELL,
+ PACA_IRQ_DEC,
+ 0,
+ PACA_IRQ_EE,
+ PACA_IRQ_EE,
+ PACA_IRQ_HMI,
+ 0, 0, 0, 0, 0 };
+
+void replay_system_reset(void)
+{
+ struct pt_regs regs;
+
+ ppc_save_regs(&regs);
+ regs.trap = 0x100;
+ get_paca()->in_nmi = 1;
+ system_reset_exception(&regs);
+ get_paca()->in_nmi = 0;
+}
+EXPORT_SYMBOL_GPL(replay_system_reset);
+
+void irq_set_pending_from_srr1(unsigned long srr1)
+{
+ unsigned int idx = (srr1 & SRR1_WAKEMASK_P8) >> 18;
+ u8 reason = srr1_to_lazyirq[idx];
+
+ /*
+ * Take the system reset now, which is immediately after registers
+ * are restored from idle. It's an NMI, so interrupts need not be
+ * re-enabled before it is taken.
+ */
+ if (unlikely(reason == IRQ_SYSTEM_RESET)) {
+ replay_system_reset();
+ return;
+ }
+
+ if (reason == PACA_IRQ_DBELL) {
+ /*
+ * When doorbell triggers a system reset wakeup, the message
+ * is not cleared, so if the doorbell interrupt is replayed
+ * and the IPI handled, the doorbell interrupt would still
+ * fire when EE is enabled.
+ *
+ * To avoid taking the superfluous doorbell interrupt,
+ * execute a msgclr here before the interrupt is replayed.
+ */
+ ppc_msgclr(PPC_DBELL_MSGTYPE);
+ }
+
+ /*
+ * The 0 index (SRR1[42:45]=b0000) must always evaluate to 0,
+ * so this can be called unconditionally with the SRR1 wake
+ * reason as returned by the idle code, which uses 0 to mean no
+ * interrupt.
+ *
+ * If a future CPU was to designate this as an interrupt reason,
+ * then a new index for no interrupt must be assigned.
+ */
+ local_paca->irq_happened |= reason;
+}
+#endif /* CONFIG_PPC_BOOK3S */
+
+/*
+ * Force a replay of the external interrupt handler on this CPU.
+ */
+void force_external_irq_replay(void)
+{
+ /*
+ * This must only be called with interrupts soft-disabled,
+ * the replay will happen when re-enabling.
+ */
+ WARN_ON(!arch_irqs_disabled());
+
+ /*
+ * Interrupts must always be hard disabled before irq_happened is
+ * modified (to prevent lost update in case of interrupt between
+ * load and store).
+ */
+ __hard_irq_disable();
+ local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
+
+ /* Indicate in the PACA that we have an interrupt to replay */
+ local_paca->irq_happened |= PACA_IRQ_EE;
+}
+
+static int __init setup_noirqdistrib(char *str)
+{
+ distribute_irqs = 0;
+ return 1;
+}
+
+__setup("noirqdistrib", setup_noirqdistrib);